Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)kẻ DM,EN vuông góc BC
Xét tam giác AHC và tam giác CNE có:
AC=CE
góc AHC= góc CNE=90
góc ACH=góc CEN
suy ra AH=CN
HC=NE
tương tự:AH=BM
HB=MB
do góc CNE=góc CPE( p là giao của CK và BE)
suy ra góc NEB=HCK
Tam giác BNE=KHC
suy ra BN=Kn suy ra BC=KA
suy ra CM=KN
suy ra tam giác CMD=KHB
có 2 cặp góc vuông tương ứng
MD,BH và MC,KN
suy ra CD vuông BK
b)từ a
có KH,BE,CD là 3 đường cao của tam giácKBC nên chúng đồng quy tại I
a: Vẽ DI,EK vuông góc AH
Xét ΔIDA và ΔHAB có
góc DIA=góc AHB
AD=AB
góc A1=góc ABH(=90 độ-góc A2)
=>ΔIDA=ΔHAB
=>ID=AH(1)
Xét ΔKAE và ΔHCA có
góc EKA=góc AHC
AE=AC
góc EAK=góc HCA
=>ΔKAE=ΔHCA
=>AH=EK=DI
Gọi giao của AH và DE là N
Xét ΔDIN và ΔKEN co
góc DIN=góc EKN
DI=EK
góc ENK=góc DNK
=>ΔDIN=ΔKEN
=>EN=DN
=>N là trung điểm của DE
b: Lấy F đối xứng A qua M
Xet ΔAMB và ΔFMC có
MA=MF
góc AMB=góc FMC
MB=MC
=>ΔAMB=ΔFMC
=>AB=CF và góc B=góc FCM
=>góc ACF=góc ACB+góc B=180 độ-góc BAC
Gọi giao của AM và DE là I
Xet ΔACF và ΔEAD có
AC=ED
CF=AD
góc EAD=góc ACF
=>ΔACF=ΔEAD
=>AF=DE
=>AM=1/2DE
ΔAMB=ΔFMC
=>góc BAM=góc MFC
ΔACF=ΔEAD
=>góc MFC=góc EDA
=>góc BAM=góc EDA
=>góc EDA+góc DAI=90 độ
=>AM vuông góc DE
t chỉ chứng minh được CD = BE thôi
a, góc DAB = góc EAC = 90
góc BAC chung
góc DAB + góc BAC = góc DAC
góc EAC + góc BAC = góc EAB
=> góc DAC = góc EAB
xét tam giác DAC và tam giác BAE có :
AE = AC do tam giác AEC vuông cân tại A (gt)
AD = AB do tam giác ABD vuông cân tại A (Gt)
=> tam giác DAC = tam giác BAE (c-g-c)
=> CD = BE (đn)
b, vẽ hình lại nhìn cho rõ
AH căt DE tại O
Kẻ EM _|_ AO tại M
Kẻ DN _|_ AO tại N
+ có góc BAH + góc BAD + góc DAN = 180
mà góc BAD = 90 do tam giác BAD vuông cân tại A (GT)
=> góc BAH + góc DAN = 90
mà góc BAH + gócABH = 90 do tam giác ABH vuông tại H
=> góc DAN = góc ABH
xét tam giác AND và tam giác BHA có : AB = AD (câu a)
góc DNA = góc BHA = 90
=> tam giác AND = tam giác BHA (ch-gn)
=> AH = DN (đn) (1)
+ góc HAC + góc CAE + góc EAM = 180
góc CAE = 90 (câu a)
=> góc HAC + góc EAM = 90
góc HAC + góc HCA = 90 do tam giác HAC vuông tại H
=> góc EAM = góc HCA
xét tam giác AHC và tam giác EMA có : AC = AE (câu a)
góc AHC = góc EMA = 90
=> tam giác AHC = tam giác EMA (ch-gn)
=> AH = ME (đn) (2)
(1)(2) => ME = DN (3)
DN _|_ AH (cách vẽ)
EM _|_ AH (cách vẽ)
=> DN // EM (tc)
=> góc NDO = góc OEM (2 góc slt)
xét tam giác DNO và tam giác EMO có : góc DNO = góc EMO = 90 và (3)
=> tam giác DNO = tam giác EMO (gn-cgv)
=> DO = OE
mà O nằm giữa D; E
=> O là trung điểm của DE
a.*] Ta có ;góc DAC = góc DAB + góc BAC = 90độ + góc BAC
góc BAE = góc CAE + góc BAC = 90độ + góc BAC
\(\Rightarrow\) góc DAC = góc BAE \((1)\)
Xét tam giác DAC và tam giác BAE có
AD = AB [ vì tam giác ABD cân ]
góc DAC = góc BAE [ theo \((1)\)]
AC = AE [ vì tam giác ACE cân ]
Do đó ; tam giác DAC = tam giác BAE [ c.g.c ]
\(\Rightarrow\)CD = EB [ cạnh tương ứng ]
*]Gọi I , O lần lượt là giao điểm của CD với EB và AB với DC
Xét tam giác AOD vuông tại A ta có
góc D + góc AOD = 90độ
mà góc D = góc ABE [ vì tam giác DAC = tam giác BAE ] hay góc D = góc OBI
góc AOD = góc IOB [ đối đỉnh ]
\(\Rightarrow\)góc OBI + góc IOB = 90độ \((2)\)
Xét tam giác IOB có
góc OBI + góc IOB + góc OIB = 180độ
\(\Rightarrow\)góc OIB = 180độ - 90độ [ theo \((2)\)]
\(\Rightarrow\)góc OIB = 90độ
\(\Rightarrow\)OI vuông góc với BE
mà I là gđ của CD và EB
\(\Rightarrow\)CD vuông góc với BE