K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét (O) có

\(\widehat{ABC}\) là góc nội tiếp chắn cung AC

\(\widehat{ADC}\) là góc nội tiếp chắn cung AC

Do đó: \(\widehat{ABC}=\widehat{ADC}\)(Hệ quả góc nội tiếp)

hay \(\widehat{ABH}=\widehat{ADC}\)(1)

Xét (O) có 

ΔADC nội tiếp đường tròn(A,D,C∈(O))

AD là đường kính(gt)

Do đó: ΔADC vuông tại C(Định lí)

Suy ra: \(\widehat{DAC}+\widehat{ADC}=90^0\)(Hai góc nhọn phụ nhau)(2)

Ta có: ΔABH vuông tại H(AH⊥BC)

nên \(\widehat{BAH}+\widehat{ABH}=90^0\)(Hai góc nhọn phụ nhau)(2)

Từ (1) và (2) suy ra \(\widehat{BAH}=\widehat{DAC}\)(đpcm)

18 tháng 1 2021

Vẽ đường kính AK

+) Dễ có: ^KBC = ^KAC (2 góc nội tiếp cùng chắn cung KC) (1)

+) ^ABK là góc nội tiếp chắn nửa đường tròn nên ^ABK = 900

 Có: ^KBC + ^CBA = ^ABK = 900 (cmt)

       ^BAH + ^CBA = 900 (∆ABH vuông tại H)

Từ đó suy ra ^KBC = ^BAH                                                    (2)

Từ (1) và (2) suy ra ^BAH = ^KAC hay ^BAH = ^OAC (đpcm)

18 tháng 1 2021

Kẻ đường kính AE của đường tròn ( O) . Ta thấy \(\widehat{ACE}=90^o\)( góc nội tiếp chắn nửa đường tròn)

\(\Rightarrow\widehat{OAC}+\widehat{AEC}=90^o\) (1)

Theo gt, ta có: \(\widehat{BAH}+\widehat{ABC}=90^O\) (2)

Lại có: \(\widehat{AEC}=\widehat{ABC}\) (3)

Từ (1), (2), (3) => đpcm

a: góc AEB=góc AHB=90 độ

=>ABHE nội tiếp

b: góc HED=góc ABC=1/2*sđ cung AC=góc ADC

=>HE//CD

9 tháng 2 2018

+ ) Ta thấy ngay hai tam giác vuông AHC và ANC có chung cạnh huyền AC nên A, H, N, C cùng thuộc đường tròn đường kính AC.

\(\Rightarrow\widehat{HNA}=\widehat{HCA}\) (Hai góc nội tiếp cùng chắn cung AH)

Ta thấy ngay hai tam giác vuông AMB và AHB có chung cạnh huyền AB nên A, M, H, B cùng thuộc đường tròn đường kính AB.

\(\Rightarrow\widehat{HMN}=\widehat{ABH}\) (Góc ngoài tại đỉnh đối diện bằng góc trong tại đỉnh)

Vậy nên \(\Delta ABC\sim\Delta HMN\left(g-g\right)\)

+) Ta có \(\widehat{ADC}=\widehat{ABC}\)  (Hai góc nội tiếp cùng chắn cung AC)

Mà \(\Delta ABC\sim\Delta HMN\Rightarrow\widehat{ABC}=\widehat{HMN}\) 

nên \(\widehat{ADC}=\widehat{HMN}\)

Chúng lại ở vị trí so le trong nên DC // HM

Ta có \(DC\perp AC\Rightarrow HM\perp AC\)

Gọi J là trung điểm AB

Ta có ngay IJ là đường trung bình tam giác ABC nên IJ // AC

Vậy nên \(HM\perp IJ\)

Mà J là tâm đường tròn ngoại tiếp tứ giác AMHB nên IJ vuông góc cung HM tại trung điểm HM hay IJ là trung trực của HM.

Vậy thì IM = IH.

Tương tự ta có IM = IH = IN hay I là tâm đường tròn ngoại tiếp tam giác HMN.

11 tháng 2 2018

ad dqi

a) Ta có: ΔABC cân tại A

mà AH là đường cao ứng với cạnh BC

nên AH là đường trung tuyến ứng với cạnh BC

Ta có: AB=AC

nên A nằm trên đường trung trực của BC\(\left(1\right)\)

Ta có: OB=OC

nên O nằm trên đường trung trực của BC\(\left(2\right)\)

Ta có: HB=HC

nên H nằm trên đường trung trực của BC(3)

Từ (1), \(\left(2\right),\left(3\right)\) suy ra A,O,H thẳng hàng

\(\Leftrightarrow A,O,H,D\) thẳng hàng

hay AD là đường kính của \(\left(O\right)\)