K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 5 2016

A B C D E O M H K

Cô hướng dẫn nhé :)

a. Tứ giác BCDE nội tiếp đường tròn đường kính BC, do ta có các góc BDC và BEC vuông.

Do góc AED là góc ngoài tại đỉnh E của tứ giác nội tiếp BCDE nên nó bằng góc đối diện với đỉnh đó, hay chính là góc BCD.

b. Ta thấy \(\Delta ABK\sim\Delta BDC\left(g-g\right)\)

Do có góc B và góc D vuông, góc DCB bằng góc AKB(cùng chắn cung AB)

\(\Rightarrow\frac{AB}{BD}=\frac{AK}{BC}\Rightarrow AB.BC=BD.AK\)

c. OM vuông góc BC nên M là trung điểm BC.

Ta thấy CK song song BH (Cùng vuông góc AC)

CE song song KB (Cùng vuông góc AB)

Từ đó ta thấy BHCK là hình bình hành suy ra HK qua trung điểm BC. Từ đó suy ra HK đi qua M hay H , K, M thẳng hàng.

Chúc em học tốt :)

17 tháng 3 2023

Giải

25 tháng 4 2022

Viết còn cặc

4 tháng 3 2021

Mình sửa lại đề: Cho tam giác ABC nhọn (AB < AC) nội tiếp (O). Đường cao BD, CE cắt nhau tại H. EF cắt BC tại F. AF cắt lại (O) tại K. Gọi M là trung điểm của BC.

a) Từ gt dễ thấy tứ giác BCDE nội tiếp đường tròn tâm M.

b) Tứ giác BCDE nội tiếp nên theo phương tích ta có FB . FC = FD . FE.

Tứ giác AKBC nội tiếp nên theo phương tích ta có FK . FA = FB . FC.

Vậy ta có đpcm.

c) Ta có FA . FK = FE . FD nên theo phương tích đảo ta có tứ giác AKED nội tiếp.

Gọi giao điểm thứ hai của đường tròn đường kính AH và FH là N.

Khi đó FH . FN = FE . FD = FB . FC.

Suy ra tứ giác BHNC nội tiếp.

Ta có \(\widehat{DNC}=360^o-\widehat{DNH}-\widehat{CNH}=\left(180^o-\widehat{DNH}\right)+\left(180^o-\widehat{CNH}\right)=\widehat{DEH}+\widehat{HBC}=2\widehat{HBC}=\widehat{DMC}\).

Do đó tứ giác DNMC nội tiếp.

Tương tự tứ giác ENMB nội tiếp.

Suy ra \(\widehat{DNM}+\widehat{DNA}=180^o-\widehat{ACB}+\widehat{AED}=180^o\) nên A, N, M thẳng hàng.

Từ đó \(\widehat{MHN}=\widehat{ANH}=90^o\) nên \(FH\perp AM\).

(Câu c là trường hợp đặc biệt của định lý Brocard khi tứ giác BEDC nội tiếp đường tròn tâm M).

4 tháng 3 2021

Hình vẽ: undefined

4: góc BEC=góc BDC=90 độ

=>BEDC nội tiếp

5: Xét ΔHDE và ΔHCB có

góc HDE=góc HCB

góc DHE=góc CHB

=>ΔHDE đồng dạng với ΔHCB

=>DE/CB=HD/HC

=>DE*HC=HD*BC