Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔABC ta có:
AN = NB
AM = MC
Suy ra MN là đường trung bình của Δ ABC
Nên MN song song với BC và MN=1/2 BC (1)
Xét Δ BIC ta có
IE = EB
IF = FC
Suy ra EF là đường trung bình của Δ BIC
Nên EF song song với BC và EF=1/2 BC(2)
Từ (1) và(2) suy ra EF =MN và EF song song với MN
Vậy MNEF là hình bình hành
xét tam giác ABC ta có
M là trđ của AC( BM là đg trung tuyến)
N là trđ của AB (CN là đg trung tuyến)
suy ra MN là đg trung bình
suy ra MN//BC; MN= 1/2 BC
xét tam giác IBC ta có
E là trđ của IB(gt)
F là trđ của IC(gt)
suy ra EF là đg trung bình
suy ra EF//BC;EF=1/2BC
mà MN//BC;MN=1/2BC
nên EF//MN;EF=1/2BC
xét t/g MNEF ta có
EF//MN(cmt)
EF=MN(cmt)
suy ra t/g MNEF là hbh
Câu 2 tớ kg hiểu nói rõ hơn
a, vì BM,CN là các trung tuyến=>AN=NB
và AM=MC=>MN là đường trung bình tam giác ABC
=>MN//BC(1)
\(=>MN=\dfrac{1}{2}BC=6cm\)
b, có H,K theo theo thứ tự là trung điểm của BG và CG.
=>GH=HB và GK=KC
=>HK là đường trung bình tam giác GBC=>HK//BC(2)
(1)(2)=>HK//MN
=>\(HK=\dfrac{1}{2}BC=>HK=MN\left(=\dfrac{1}{2}BC\right)\)
Phần vẽ hình và ghi giả thuyết ,kết luận bạn tự làm nhé :)
a) Xét tam giác ABC ,ta có :
AN = NB (GT)
AM = MC (GT)
Nên MN là đường trung bình của tam giác ABC
=> MN // BC (1) , MN = 1/2 BC (2)
Xét tam giác BCI ,ta có :
BE = EI (GT)
CI = IF (GT)
Nên EF là đường trung bình của tam giác BIC
=> EF // BC (3) , EF = 1/2 BC (4)
Từ (1) và (3) => MN // EF (5)
Từ (2) và (4) => MN = EF (6)
Từ (5) và (6) => MNEF là hình bình hành ( Dấu hiệu nhận biết 3 )
b) Xét tứ giác EFHK ,ta có :
EF // HK (Vì H,K € BC ; mà BC// EF )
EH // FK (Vì H € NE ,K € MF ,mà NE // MF)
Do đó ,tứ giác EFKH là hình bình hành (Dấu hiệu nhận biết 1)
=> EF = HK (7)
mà EF = 1/2 BC [theo (4)] (8)
Từ (7) và (8) => HK = 1/2 BC
Câu c) tớ chưa nghĩ ra cách chứng minh
Cậu hãy tự suy nghĩ , chúc bạn may mắn