Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có
\(\dfrac{AN}{AB}=\dfrac{AM}{AC}\)
Do đó: MN//BC
Xét tứ giác BNMC có MN//BC
nên BNMC là hình thang
mà \(\widehat{NBC}=\widehat{MCB}\)
nên BMNC là hình thang cân
a: Xét ΔABC có
N là trung điểm của AB
M là trung điểm của AC
Do đó: NM là đường trung bình của ΔABC
Suy ra: NM//BC
Xét tứ giác BNMC có NM//BC
nên BNMC là hình thang
mà \(\widehat{B}=\widehat{C}\)
nên BNMC là hình thang cân
Xét ΔABC có
N là trung điểm của AB
M là trung điểm của AC
Do đó: NM là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)
Suy ra: NM//BC và \(NM=\dfrac{BC}{2}\)(1)
Xét ΔGBC có
E là trung điểm của GB(gt)
F là trung điểm của GC(gt)
Do đó: EF là đường trung bình của ΔGBC(Định nghĩa đường trung bình của tam giác)
Suy ra: EF//BC và \(EF=\dfrac{BC}{2}\)(2)
Từ (1) và (2) suy ra NM//EF và NM=EF
a: Xét ΔABC có
M là trung điểm của AC
N là trung điểm của AB
Do đó: MN là đường trung bình của ΔABC
Suy ra: \(MN=\dfrac{BC}{2}=5\left(cm\right)\)
Xét \(\Delta ABC\)có:
\(EA=EB\left(gt\right)\)
\(DA=DC\left(gt\right)\)
\(\Rightarrow ED\)là đường trung bình của \(\Delta ABC.\)
\(ED=\frac{1}{2}BC;\)\(ED\)//\(BC\left(1\right)\)
Xét \(\Delta GBC\)có:
\(MG=MB\left(gt\right)\)
\(NG=NC\left(gt\right)\)
\(\Rightarrow MN\)là đường trung bình \(\Delta GBC.\)
\(MN=\frac{1}{2}BC;\)\(MN\)//\(BC\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\Rightarrow DE=MN;\)\(DE\)//\(MN.\)
a, vì BM,CN là các trung tuyến=>AN=NB
và AM=MC=>MN là đường trung bình tam giác ABC
=>MN//BC(1)
\(=>MN=\dfrac{1}{2}BC=6cm\)
b, có H,K theo theo thứ tự là trung điểm của BG và CG.
=>GH=HB và GK=KC
=>HK là đường trung bình tam giác GBC=>HK//BC(2)
(1)(2)=>HK//MN
=>\(HK=\dfrac{1}{2}BC=>HK=MN\left(=\dfrac{1}{2}BC\right)\)