Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác ABCD có
M là trung điểm của AC
M là trung điểm của BD
Do đó: ABCD là hình bình hành
Suy ra: AB=CD; AD=BC
b: Xet ΔAMI và ΔCMK có
\(\widehat{AMI}=\widehat{CMK}\)
MA=MC
\(\widehat{MAI}=\widehat{MCK}\)
Do đó: ΔAMI=ΔCMK
Suy ra: MI=MK
a: Xét tứ giác ABCD có
M là trung điểm của AC
M là trung điểm của BD
Do đó: ABCD là hình bình hành
Suy ra: AB=CD
a: Xét ΔMAB và ΔMCD co
MA=MC
góc AMB=góc CMD
MB=MD
=>ΔMAB=ΔMCD
=>AB=CD và góc MAB=góc MCD
=>AB//CD
=>AC vuông góc DC
b: Xét tứ giac ABCD có
M là trung điểm chung của AC và BD
=>ABCD là hình bình hành
=>AD//BC và AD=BC
a) Xét tam giác AMB và tam giác DMC có:
BM = CM (gt)
AM =DM (gt)
\(\widehat{AMB}=\widehat{DMC}\) (Hai góc đối đỉnh)
\(\Rightarrow\Delta AMB=\Delta CMD\left(c-g-c\right)\)
b) Do \(\Delta AMB=\Delta CMD\Rightarrow\widehat{BAM}=\widehat{DCM}\)
Chúng lại ở vị trí so le trong nên AB //CD.
c) Xét tam giác AME có MH là đường cao đồng thời trung tuyến nên tam giác AME cân tại M.
Suy ra MA = ME
Lại có MA = MD nên ME = MD.
d) Xét tam giac AED có MA = ME = MD nê tam giác AED vuông tại E.
Suy ra ED // BC
Xét tam giác cân MED có MK là trung tuyến nên đồng thời là đường cao.
Vậy thì \(MK\perp ED\Rightarrow MK\perp BC\)
b: Xét tứ giác ABCD có
M là trung điểm của AC
M là trung điểm của BD
Do đó: ABCD là hình bình hành
Suy ra: AB//CD
tự kẻ hình nhé chị :
a, xét tam giác AMB và tam giác CMD có : BM = MD (gt)
AM = MC do M là trung điểm của AC (gt)
góc AMB = góc CMD (đối đỉnh)
=> tam giác AMB = tam giác CMD (c - g - c)
=> AB = CD
BC = AD chứng minh tương tự phần ở trên
b, cái này theo trường hợp g - c - g