K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 12 2017

xét 2 \(\Delta IEC\)\(\Delta IDB\)có : IE=ID(giả thiết) ; IC=IB(giả thiết);\(\widehat{EIC}=\widehat{BID}\)(đối đỉnh)

=>\(\Delta IEC=\Delta IDB\)(c.g.c)

=>\(\widehat{ECI}=\widehat{IBD}\)

mà hai góc này ở vị trí so le trong =>EC//BD

=>\(\widehat{DBH}=\widehat{CHB}\)(đồng vị)

mà \(\widehat{DBH}\)=90*=>\(\widehat{CHB}=90^0\)

trong \(\Delta AHC\)có \(\widehat{CHB}=90^0\)=>\(\Delta AHC\)vuông ở H

23 tháng 11 2016

???????????????????????????????????????????????????????????????????

7 tháng 12 2017

phải trả lời hn hỏi ra chỉ vì tôi hc lp 6 nên ko giải đc

18 tháng 12 2017

A C D I H B I

Hình vẽ ko chuẩn xác cho lắm 

Chứng minh \(\Delta AHC\)là \(\Delta\)vuông

Xét \(\Delta ECI\)và \(\Delta DBI\)có:

\(EI=ID\) ( giả thiết )

\(BI=IC\)( I là trung điểm của \(BC\))

\(\widehat{EIC}=\widehat{DIB}\)( 2 góc đối đỉnh)

do đó \(\Delta ECI=\Delta DBI\)( C.G.C)

\(\Rightarrow\widehat{CEI}=\widehat{BDI}\)( 2 góc tương ứng)

\(\Rightarrow EC\)song song với \(BD\)

mà \(H\)là giao điểm của \(EC\)và \(AB\)

\(\Rightarrow H\in EC\)

\(\Rightarrow HC\)song song với \(BD\)

theo bài ra \(BD\perp AB\)cắt \(AI\)tại \(D\)

\(\Rightarrow HC\perp AB\) ( 2 góc ở vị trí đồng vị do \(HC\)và \(BD\)tạo thành)

\(\Rightarrow\Delta AHC\)vuông tại \(H\) ( điều phải chưng minh)

vậy \(\Delta AHC\)vuông tại \(H\)

Xét tứ giác BDCE có 

I là trung điểm của BC

I là trung điểm của DE

DO đó: BDCE là hình bình hành

Suy ra: CE//BD

=>CH//BD

=>CH\(\perp\)AH

hay ΔHAC vuông tại H

Trl:

a) Vì I thuộc đường trung trực của BC và AD(gt))

=> IB=IC và IA=ID (theo định lí đường trung trực).

Xét 2 ΔAIB và DIC có:

AI=DI(cmt)

AB=DC(gt)

IB=IC(cmt)

=> ΔAIB=ΔDIC(c−c−c).

b) Theo câu a) ta có ΔAIB=ΔDIC

=> BAIˆ=CDIˆ (2 góc tương ứng).

Xét ΔADIcó:

IA=ID(cmt)

=> ΔADI cân tại I.

=> ADIˆ=DAIˆ(tính chất tam giác cân).

Hay CDIˆ=CAIˆ.

Mà BAIˆ=CDIˆ(cmt)

=> BAIˆ=CAIˆ

=> AI là tia phân giác của BACˆ.

                                                          ~Học tốt!~

Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng: a) AM=IK b) Tam giác AMI bằng tam giác IKC c) AI=IC Bài 2: Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Trên tia đối của tia IA lấy điểm D sao cho ID=IA a) CMR tam giác BID bằng tam giác CIA b) CMR : BD vuông góc với AB c) Qua A kẻ đường thẳng song song với BC cắt...
Đọc tiếp

Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng: a) AM=IK b) Tam giác AMI bằng tam giác IKC c) AI=IC Bài 2: Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Trên tia đối của tia IA lấy điểm D sao cho ID=IA a) CMR tam giác BID bằng tam giác CIA b) CMR : BD vuông góc với AB c) Qua A kẻ đường thẳng song song với BC cắt đường thẳng BD tại M. C/M tam giác BAM bằng tam giác ABC d) CMR: AB là tia phân giác cuả góc DAM Bài 3: Cho tam giác ABC vuông ở A và AB=AC.Gọi K là trung điểm của BC a) C/M: tam giác AKB bằng tam giác AKC b) C/M: AK vuông góc với BC c) từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E.C/M EK song song với AK Bài 4: Cho tam giác ABC có AB=AC, kẻ BD vuông góc với AC, CE vuông góc với AB(D thuộc AC, E thuộc AB). Gọi O là giao điểm của BD và CE. CMR a) BD= CE b) tam giác OEB bằng tam giác ODC c) AO là tia phân giác cua góc BAC

1
22 tháng 11 2019

1. Câu hỏi của 1234567890 - Toán lớp 7 - Học toán với OnlineMath