Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề sai rồi bạn. Cho ΔABC thì làm sao A,B,C thẳng hàng được?
Đề sai rồi bạn. Đã cho ΔABC rồi thì làm sao A,B,C thẳng hàng được?
Xét tứ giác AHBC có
D là trung điểm của AB
D là trung điểm của HC
Do đó: AHBC là hình bình hành
Suy ra: AH//BC
Xét tứ giác ABCG có
E là trung điểm của AC
E là trung điểm của BG
Do đó: ABCG là hình bình hành
Suy ra: AG//BC
Ta có: AH//BC
AG//BC
mà AH,AG có điểm chung là A
nên H,A,G thẳng hàng
xét ΔBEC và ΔAEG có:
góc AEG = góc BEC ( đối đỉnh)
AE= AC ( E là trung điểm của AC)
BE= EG ( E là trung điểm của BG)
--> ΔBEC = ΔGEA ( c.g.c)
-->góc EBC = góc EGA ( hai góc tương ứng)
Vì GB cắt AG và BC tạo thành một cặp góc so le trong bằng nhau ( góc EBC = góc EGA)
--->AG // BC
Xét ΔBDC và ΔHDA có:
DB = DA ( D là trung điểm của AB )
DH = DC ( D là trung điểm của HC)
góc HDA = góc BDC ( đối đỉnh)
---> ΔBDC = ΔADH ( c.g.c)
--->góc H = góc DCB ( hai góc tương ứng)
vì HC cắt HA và BC tạo ra hai cặp góc so le trong bằng nhau (góc H = góc DCB)
--->HA // BC
Vì HA // BC
AG // BC
----> H, A, G thẳng hàng
xét ΔBEC và ΔAEG có:
góc AEG = góc BEC ( đối đỉnh)
AE= AC ( E là trung điểm của AC)
BE= EG ( E là trung điểm của BG)
--> ΔBEC = ΔGEA ( c.g.c)
-->góc EBC = góc EGA ( hai góc tương ứng)
Vì GB cắt AG và BC tạo thành một cặp góc so le trong bằng nhau ( góc EBC = góc EGA)
--->AG // BC
Xét ΔBDC và ΔHDA có:
DB = DA ( D là trung điểm của AB )
DH = DC ( D là trung điểm của HC)
góc HDA = góc BDC ( đối đỉnh)
---> ΔBDC = ΔADH ( c.g.c)
--->góc H = góc DCB ( hai góc tương ứng)
vì HC cắt HA và BC tạo ra hai cặp góc so le trong bằng nhau (góc H = góc DCB)
--->HA // BC
Vì HA // BC
AG // BC
----> H, A, G thẳng hàng
Bạn tham khảo tại đây nhé!
https://h.vn/hoi-dap/question/142377.html
Ta xét tam giác NEA và tam giác NBC
NE = NC ( N là trung điểm EC )
góc ANE = góc BNC ( hai góc đối đỉnh )
NA = NB ( gt )
=> tam giác NAE = tam giác NBC
=> góc EAN = góc ABC ( hai góc tương ứng ) (1)
Chứng minh tương tự: tam giác MAD = tam giác MBC
=> góc DAM = góc ACB ( hai góc tương ứng ) (2)
Ta có : góc ABC + góc ACB + góc BAC = 180 ( tổng ba góc trong tam giác )
(1),(2)=> góc EAB + góc BAC + góc DAC = 180
=> Ba điểm E, D. A thẳng hàng
Hình tự vẽ nhé!
Bài giải:
c)Theo câu a ta có: Tam giác MAB=MDC=>Góc BAM=CDM.
Xét Tam giác AEM và DFM có:
AE=DF(GT)
Góc BAM=CDM (CMT)
AM=DM(GT)
=> Tam giác AEM=Tam giác DFM (c.g.c) => Góc AME=DMF(*)( góc tương ứng).
Mặt khác MA và MD là 2 tia đối nhau nên ta có:Góc AMF+DMF= 180 độ.
Từ (*) => Góc AMF+AME=180 độ =>ME và MF là hai tia đối nhau (theo dhnb) => E;M;F thẳng hàng(đpcm)
Đã là tam giác ABC thì đương nhiên 3 điểm A; B; C không thẳng hàng
Xem lại đề bài