Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBEC và ΔCDB có
BE=CD
\(\widehat{EBC}=\widehat{DCB}\)
BC chung
Do đó: ΔBEC=ΔCDB
Suy ra: CE=DB
b: Xét ΔGBC có \(\widehat{GCB}=\widehat{GBC}\)
nên ΔGBC cân tại G
=>GB=GC
Ta có: GB+GD=BD
GE+GC=CE
mà BD=CE
và GB=GC
nên GD=GE
hay ΔGDE cân tại G
c: Ta có: AB=AC
nên A nằm trên đường trung trực của BC(1)
Ta có: GB=GC
nên G nằm trên đường trung trực của BC(2)
Ta có: MB=MC
nên M nằm trên đường trung trực của BC(3)
Từ (1), (2) và (3) suy ra A,G,M thẳng hàng
Bài 1 :
Xét tam giác ABC và ADE có :
góc EAD = góc CAB (đối đỉnh)
CA=EA (gt)
BA=DA (gt)
suy ra tam giác ABC=ADE (c.g.c)
suy ra :DE =BC ( 2 cạnh tương ứng ) ; góc E= góc C ; góc D = góc B (các góc tương ứng )
Mà M; N lần lượt là trung điểm của DE và BC suy ra EN=DN=BM=CM
Xét tam giác ENA và CMA có:
EN = CM ( cmt)
góc E = góc C (cmt)
AE = AC (gt)
suy ra tam giác EAN = CMA (c.g.c) suy ra AM =AN ( 2 cạnh tương ứng )
Xét tam giác NDA và MBA có:
góc D= góc B (cmt)
ND = MB (cmt )
DA = BA (cmt )
suy ra tam giác NDA = MBA (c.g.c)suy ra góc NAD = góc MAB
Ta có góc DAC +MAC+MAB = 180 độ ( vì D nằm trên tia đối của tia AB )
Mà góc NAD = góc MAB suy ra góc DAC+MAC+NAD =180 độ
suy ra 3 điểm M,A,N thẳng hàng (2)
Từ (1) và (2 ) suy ra A là trung điểm của MN
( mình vẽ hình hơi xấu , mong bạn thông cảm . Nếu đúng nhớ kết bạn với mình nhé , mong tin bạn ^-^)
Bài 3:
Xét ΔHMB vuông tại H và ΔKMC vuông tại K có
MB=MC
\(\widehat{HMB}=\widehat{KMC}\)
Do đo: ΔHMB=ΔKMC
Suy ra: BH=CK
A)VÌ AD LÀ TRUNG TUYẾN CỦA \(\Delta ABC\)
MÀ G LÀ TRỌNG TÂM CỦA \(\Delta ABC\)
\(\Rightarrow AG=2GD\)
MÀ \(AG=GM\)( G LÀ TRUNG ĐIỂM CỦA AM )
\(\Rightarrow GM=2GD\)
NÊN D LÀ TRUNG ĐIỂM CỦA GM
\(\Rightarrow GD=DM\left(ĐPCM\right)\)
XÉT \(\Delta BDM\)VÀ\(\Delta CDG\)CÓ
\(BD=CD\left(GT\right)\)
\(\widehat{BDM}=\widehat{CDG}\)( ĐỐI ĐỈNH)
\(GD=DM\left(CMT\right)\)
=>\(\Delta BDM\)=\(\Delta CDG\)( C-G-C)
B)
VÌ CE LÀ TRUNG TUYẾN CỦA \(\Delta ABC\)
MÀ G LÀ TRỌNG TÂM CỦA \(\Delta ABC\)
\(\Rightarrow CG=\frac{2}{3}CE\)
THAY\(CG=\frac{2}{3}.6=4\left(CM\right)\)
MÀ \(\Delta BDM\)=\(\Delta CDG\)( CMT)
=>\(BM=CG=4\left(CM\right)\)
C)
TA CÓ
\(AB< DB+DA\)
\(AC< DC+DA\)
CỘnG VẾ THEO VẾ
\(\Rightarrow AB+AC< 2AD+DB+DC\)
GIẢI TIẾP LÀ RA
HFa, kg