Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\overrightarrow{AA'}+\overrightarrow{BB'}+\overrightarrow{CC'}=\frac{1}{2}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)+\frac{1}{2}\left(\overrightarrow{BA}+\overrightarrow{BC}\right)+\frac{1}{2}\left(\overrightarrow{CA}+\overrightarrow{CB}\right)\)
\(=\frac{1}{2}\left(\overrightarrow{AB}+\overrightarrow{BA}\right)+\frac{1}{2}\left(\overrightarrow{BC}+\overrightarrow{CB}\right)+\frac{1}{2}\left(\overrightarrow{AC}+\overrightarrow{CA}\right)=\overrightarrow{0}\)
a) Ta có:
\(\overrightarrow{AB'}+\overrightarrow{AC'}=\overrightarrow{BC}+\overrightarrow{AB}+\overrightarrow{BC'}=\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{CA}\)\(=\overrightarrow{AC}+\overrightarrow{CA}=\overrightarrow{0}\).
Vậy A là trung điểm của B'C'.
b)
Theo câu a ta chứng minh được A là trung điểm của B'C'.
Tương tự ta chứng minh được: B là trung điểm của A'C'; C là trung điểm của A'B'.
Từ đó suy ra ba đường thẳng AB', BB', CC' là ba đường trung tuyến của tam giác A'B'C' nên ba đường thẳng AA', BB', CC' đồng quy.
Các kí hiệu bên dưới đều là vecto chứ ko phải đoạn thẳng:
a/ \(BB'+CC'+BA+CA=2AA'+BA+CA\)
\(=2\left(AB+BA'\right)+BA+CA=2AB+2BA'+BA+CA\)
\(=AB+CA+2BA'=CB+2BA'=CA'+A'B+2BA'\)
\(=BA'+CA'\)
b/ \(AA'+BB'+CC'=AB+BA'+BC+CB'+CA+AC'\)
\(=AB+BC+CA+BA'+CB'+AC'\)
\(=AC+CA+BA'+CB'+AC'\)
\(=BA'+CB'+AC'\)
Lời giải:
a)
Vì $B,I,C$ thẳng hàng, $I$ nằm giữa $B$ và $C$ nên \(\overrightarrow{BI},\overrightarrow{IC}\) là 2 vecto cùng hướng
Mà $I$ là trung điểm của $BC$ nên \(|\overrightarrow{BI}|=|\overrightarrow{IC}|\)
Từ 2 điều trên suy ra \(\overrightarrow{BI}=\overrightarrow{IC}\)
b)
Theo tính chất trung tuyến- trọng tâm thì \(\overrightarrow{AG}=\frac{2}{3}\overrightarrow{AI}\)
\(\Leftrightarrow \overrightarrow{AG}=\frac{2}{3}(\overrightarrow{AG}+\overrightarrow{GI})\)
\(\Leftrightarrow \frac{1}{2}\overrightarrow{AG}=\overrightarrow{GI}=-\overrightarrow{IG}\)
\(\Leftrightarrow \overrightarrow{IG}=-\frac{1}{2}\overrightarrow{AG}(1)\)
$J$ là trung điểm của $BB'$ nên \(\overrightarrow{BJ}=\frac{1}{2}\overrightarrow{BB'}=-\frac{1}{2}\overrightarrow{B'B}(2)\)
Từ (1) và (2) kết hợp với \(\overrightarrow{B'B}=\overrightarrow{AG}\) suy ra \(\overrightarrow{IG}=\overrightarrow{BJ}\) (đpcm)