Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Joen Jungkook - Toán lớp 7 - Học toán với OnlineMath
a) EF là đường trung bình => EF = 1/2 AB
mà BD = 1/2 AB => BD = EF
b) chứng minh giống trên => DE = CF
mà AD = EF và AE = EC => tam giác ADE = tam giác EFC
c) DE = BF và DE // BF
=> BDEF là hình bình hành
=> BE cắt DF tại trung điểm mỗi đường
mà M là trung điểm DF
=> M là trung điểm BE
=> B,M,E thẳng hàng
a: Xét tứ giác BDEF có
BD//EF
DE//BF
Do đó: BDEF là hình bình hành
Suy ra: BD=EF
b: Xét ΔADE và ΔEFC có
\(\widehat{ADE}=\widehat{EFC}\)
AD=EF
\(\widehat{A}=\widehat{FEC}\)
Do đó: ΔADE=ΔEFC
c: Ta có: BDEF là hình bình hành
nên Hai đường chéo BE và DF cắt nhau tại trung điểm của mỗi đường
mà M là trung điểm của DF
nên M là trung điểm của BE
hay B,M,E thẳng hàng
c: Xét ΔABC có
D là trung điểm của AB
DE//BC
Do đó: E là trung điểm của AC
Cứng đờ tay luôn rồi, khổ quá:((
a) Xét ΔDBFΔDBF và ΔFED:ΔFED:
DF:cạnh chung
ˆBDF=ˆEFDBDF^=EFD^(AB//EF)
ˆBFD=ˆEDFBFD^=EDF^(DE//BC)
=> ΔBDF=ΔEFD(g−c−g)ΔBDF=ΔEFD(g−c−g)
b) (Ở lớp 8 thì sé có cái đường trung bình ý bạn, nó sẽ có tính chất luôn, nhưng lớp 7 chưa học đành làm theo lớp 7 vậy)
Ta có: ˆDAE+ˆAED+ˆEDA=180oDAE^+AED^+EDA^=180o (Tổng 3 góc trong 1 tam giác)
Lại có: ˆAED+ˆDEF+ˆFEC=180oAED^+DEF^+FEC^=180o
Mà ˆDEF=ˆEDADEF^=EDA^(AB//EF)
=>ˆDAE=ˆFECDAE^=FEC^
Xét ΔDAEΔDAE và ΔFEC:ΔFEC:
DA=FE(=BD)
ˆDAE=ˆEFC(=ˆDBF)DAE^=EFC^(=DBF^)
ˆDAE=ˆFECDAE^=FEC^ (cmt)
=>ΔDAE=ΔFEC(g−c−g)ΔDAE=ΔFEC(g−c−g)
=> DE=FC(2 cạnh t/ứ)
=> Đpcm
Cho tam giác ABC, D là trung điểm của AB. Đường thẳng qua D và song song với BC cắt AC ở E, đường thẳng qua E và song song với AB cắt BC ở F. Chứng minh rằng :
a) AD = EF
b) Tam giác ADE = Tam giác EFC= tam giác DBF
c) BC= 2 lần DE
D với F. Xét ΔBDF và ΔFDE ta có:
ˆBDF=^DFE (so le trong (Vì AB//EF (gt))
DF cạnh chung
ˆDFB=ˆFDE(so le trong (Vì DE//BC (gt))
⇒ΔBDF=ΔFDE (g.c.g)
⇒DB=EF (2 cạnh tương ứng )
Mà DB=DA (D là trung điểm AB)
Suy ra AD=EF
b)Xét ΔADE và ΔEFC ta có:
ˆADE=ˆCFE (=ˆBAC; đồng vị của DE//BC và EF//AB)
AD=EF (cmt)
ˆDAE=ˆFEC(đồng vị của DE//BC)
⇒ΔADE=ΔEFC (g.c.g)
c)Vì ΔADE=ΔEFC (cmt)
Suy ra AE=EC (2 cạnh tương ứng )
HT
Câu hỏi của Joen Jungkook - Toán lớp 7 - Học toán với OnlineMath