K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2017

Ta có: DE // BC (gt)

⇒∠(D1 ) =∠B (đồng vị) (1)

Do EF // AB (gt)

⇒∠(F1 ) =∠B (đồng vị) (2)

Từ (1) và (2) suy ra: ∠(D1 ) =∠F1

Xét Δ ADE và Δ EFC, ta có:

∠A =∠(E1 ) (hai góc đồng vị, EF// AB)

AD = EF ( chứng minh a)

∠(D1 ) =∠(F1 ) (chứng minh trên)

Suy ra : Δ ADE = Δ EFC(g.c.g)

30 tháng 11 2019

giải hộ tớ bài ở trên

4 tháng 12 2019

Câu hỏi của Joen Jungkook - Toán lớp 7 - Học toán với OnlineMath

5 tháng 8 2022

Cho tam giác ABC, D là trung điểm của AB. Đường thẳng qua D và song song với BC cắt AC ở E, đường thẳng qua E và song song với AB cắt BC ở F. Chứng minh rằng :

a) AD = EF

b)  Tam giác ADE = Tam giác EFC= tam giác DBF
c) BC= 2 lần DE

D với F. Xét ΔBDF và ΔFDE ta có:

ˆBDF=^DFE (so le trong (Vì AB//EF (gt))

DF cạnh chung

ˆDFB=ˆFDE(so le trong (Vì DE//BC (gt))

⇒ΔBDF=ΔFDE (g.c.g)

⇒DB=EF (2 cạnh tương ứng )

Mà DB=DA (D là trung điểm AB)

Suy ra AD=EF

b)Xét ΔADE và ΔEFC ta có:

ˆADE=ˆCFE (=ˆBAC; đồng vị của DE//BC và EF//AB)

AD=EF (cmt)

ˆDAE=ˆFEC(đồng vị của DE//BC)

⇒ΔADE=ΔEFC (g.c.g)

c)Vì ΔADE=ΔEFC (cmt)

Suy ra AE=EC (2 cạnh tương ứng )

HT

28 tháng 12 2015

CHTT nha Nguyễn Đào Hà Nhi

13 tháng 9 2018

Xét Δ DBF và Δ FDE, ta có:

∠(BDF) =∠(DFE) (so le trong vì EF // AB)

DF cạnh chung

∠(DFB) =∠(FDE) (so le trong vì DE // BC)

Suy ra: Δ DFB = Δ FDE(g.c.g) ⇒ DB = EF (hai cạnh tương ứng)

Mà AD = DB (gt)

Vậy: AD = EF

22 tháng 8 2018

Vì : Δ ADE = Δ EFC nên AE = EC (hai cạnh tương ứng)

Giải sách bài tập Toán 7 | Giải sbt Toán 7

10 tháng 1 2021

mặt dù đây ko phải câu hỏi mình chọn nhưng nó rất là hay và dễ hiểu

Mình cũng xin chúc các bạn năm mới vui vẻ cùng Hoc24 nhahaha!

25 tháng 12 2016

A D E B F C a)Nối D với F. Xét \(\Delta BDF\)\(\Delta FDE\) ta có:

\(\widehat{BDF}=\widehat{DFE}\) (so le trong (Vì AB//EF (gt)))

DF cạnh chung

\(\widehat{DFB}=\widehat{FDE}\) (so le trong (Vì DE//BC (gt)))

\(\Rightarrow\Delta BDF\)\(=\Delta FDE\) (g.c.g)

\(\Rightarrow DB=EF\) (2 cạnh tương ứng )

\(DB=DA\) (D là trung điểm AB)

Suy ra AD=EF

b)Xét \(\Delta ADE\)\(\Delta EFC\:\) ta có:

\(\widehat{ADE}=\widehat{CFE}\) (\(=\widehat{BAC}\); đồng vị của DE//BC và EF//AB)

\(AD=EF\) (cmt)

\(\widehat{DAE}=\widehat{FEC}\) (đồng vị của DE//BC)

\(\Rightarrow\Delta ADE=\Delta EFC\) (g.c.g)

c)Vì \(\Delta ADE=\Delta EFC\) (cmt)

Suy ra \(AE=EC\) (2 cạnh tương ứng )

 

a: Xét tứ giác BDEF có 

BD//EF

DE//BF

Do đó: BDEF là hình bình hành

Suy ra: BD=EF

b: Xét ΔADE và ΔEFC có 

\(\widehat{ADE}=\widehat{EFC}\)

AD=EF

\(\widehat{A}=\widehat{FEC}\)

Do đó: ΔADE=ΔEFC

c: Ta có: BDEF là hình bình hành

nên Hai đường chéo BE và DF cắt nhau tại trung điểm của mỗi đường

mà M là trung điểm của DF

nên M là trung điểm của BE

hay B,M,E thẳng hàng