K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2017

B C A M D W

a) Theo đề bài, ta có:

\(\widehat{B}\)>\(\widehat{C}\)

Mà đối diện với \(\widehat{B}\) là cạnh AC, đối diện với \(\widehat{C}\) là cạnh AB

=>AC>AB

b) Xét \(\Delta\)AMB và \(\Delta\)DMC, ta có:

AM=MD (gt)

MB=MC (gt)

\(\widehat{AMB}\)=\(\widehat{CMD}\) (đối đỉnh)

Do đó: \(\Delta\)AMB=\(\Delta\)DMC (c-g-c)

=> AB=CD (2 cạnh tương ứng)

mà AC>AB

nên AC>CD

=> \(\widehat{CDA}\)=\(\widehat{CAD}\)

1 tháng 2 2018

a) Theo mối quan hệ giữa cạnh và góc trong tam giác:

\(\widehat{B}>\widehat{C}\Rightarrow AC>AB\)

b) Dễ thấy \(\Delta ABM=\Delta DCM\left(c-g-c\right)\Rightarrow AB=CD\)

Do AC > AB nên AC > CD.

Xét tam giác ACD có AC > CD nên \(\widehat{CDA}>\widehat{CAD}\)

c) Do \(\Delta ABM=\Delta DCM\Rightarrow\widehat{CDA}=\widehat{BAD}\)

Vậy nên \(\widehat{BAM}>\widehat{CAM}\)

Suy ra tia phân giác AJ nằm trong góc BAM hay nằm ngoài góc CAM.

1 tháng 2 2018

A A B B C C M M D D J J

22 tháng 12 2021

a: Xét ΔABM và ΔACM có

AB=AC

\(\widehat{BAM}=\widehat{CAM}\)

AM chung

Do đó: ΔABM=ΔACM

Hình như đề bài thiếu nha bạn

15 tháng 1 2017

A B C H I E D

ta có \(\widehat{ABH}+\widehat{HAB}=90^o\)( tam giác HAB vuông tại H )

và \(\widehat{HAB}+\widehat{HAC}=90^o\left(gt\right)\)

suy ra \(\widehat{ABH}=\widehat{HAC}\)( vì cùng phụ với HAB )

b)    xét \(\Delta IAH \)và \(\Delta ICE\)

IA = IC (gt)

IH =IE (gt)

góc HIA = góc EIC ( đối đỉnh )

do đó \(\Delta IAH=\Delta ICE\left(c.g.c\right)\)

suy ra AH = EC ( 2 cạnh tương ứng )

và \(\widehat{HAI}=\widehat{ECA}\)(2 góc tương ứng )

xét \(\Delta HAC\)và \(\Delta ECA\)

AH = EC (cmt)

góc HAI = góc ECA (cmt)

AC là cạnh chung

do đó \(\Delta HAC=\Delta ECA\left(c.g.c\right)\)

suy ra \(\widehat{AHC}=\widehat{CEA}\)(2 góc tương ứng)

mà \(\widehat{AHC}=90^o\Rightarrow\widehat{CEA}=90^o\)

hay \(CE⊥AE\)