K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2018

a) Theo mối quan hệ giữa cạnh và góc trong tam giác:

\(\widehat{B}>\widehat{C}\Rightarrow AC>AB\)

b) Dễ thấy \(\Delta ABM=\Delta DCM\left(c-g-c\right)\Rightarrow AB=CD\)

Do AC > AB nên AC > CD.

Xét tam giác ACD có AC > CD nên \(\widehat{CDA}>\widehat{CAD}\)

c) Do \(\Delta ABM=\Delta DCM\Rightarrow\widehat{CDA}=\widehat{BAD}\)

Vậy nên \(\widehat{BAM}>\widehat{CAM}\)

Suy ra tia phân giác AJ nằm trong góc BAM hay nằm ngoài góc CAM.

1 tháng 2 2018

A A B B C C M M D D J J

a: góc C=180-80-60=40 độ

Vì góc A>góc B>góc C

=>BC>AC>AB

b: Xét tứ giác ABDC có

M là trung điểm chung của AD và BC

=>ABDC là hình bình hành

=>AB=CD

AB+AC=AB+BD>AD

c: Xét ΔADC có

AN,CM là trung tuyến

AN cắt CM tại K

=>K là trọng tâm

=>CK=2/3CM=2/3*1/2BC=1/3CB

=>BC=3CK

Bài 1: Cho tam giác ABC cân tại A, chu vi bằng 20cm, cạnh đáy bằng 8cm. Hãy so sánh các góc của tam giácBài 2: Cho tam giác ABC, biết độ dài các cạnh tam giác có tỉ lệ AB:AC:BC = 3:4:5. Hãy so sánh các góc của tam giácBài 3: Cho tam giác ABC, góc A là góc tù. Trên cạnh AC lấy điểm D, E sao cho D nằm giữa A và E. Chứng minh rằng BA < BD < BE < BCBài 4: Cho tam giác ABC vuông tại B, CD là tia phân giác của góc C. Từ D...
Đọc tiếp

Bài 1: Cho tam giác ABC cân tại A, chu vi bằng 20cm, cạnh đáy bằng 8cm. Hãy so sánh các góc của tam giác
Bài 2: Cho tam giác ABC, biết độ dài các cạnh tam giác có tỉ lệ AB:AC:BC = 3:4:5. Hãy so sánh các góc của tam giác
Bài 3: Cho tam giác ABC, góc A là góc tù. Trên cạnh AC lấy điểm D, E sao cho D nằm giữa A và E. Chứng minh rằng BA < BD < BE < BC
Bài 4: Cho tam giác ABC vuông tại B, CD là tia phân giác của góc C. Từ D kẻ đường thẳng vuông góc với AC tại E. Chứng minh rằng DE = DB < DA
Bài 5: Cho tam giác ABC có AB < AC. Gọi M là trung điểm BC. Trên tia đối của MA lấy điểm D sao cho MD = MA. Hãy so sánh góc CDA và góc CAD
Bài 6: Cho tam giác ABC có AB > AC, BN là phân giác của góc ABC, CM là phân giác của ACB, I là giao điểm của BN, CM. Hãy so sánh IC và IB, AM và BM
Bài 7: Cho tam giác ABC, có AB < AC. M là trung điểm của BC, AD là phân giác góc BAC. Chứng minh rằng: 
   a) Góc AMB < góc AMC
   b) Góc MAB > góc CAM
   c) Góc ADB < góc ADC
   d) CD < DB
Bài 8: Cho tam giác ABC vuông tại A. M là trung điểm của AC. Trên tia đối của MB lấy điểm E sao cho ME = MB. Chứng minh rằng:
   a) BC > CE; CE ⊥ AC
   b) Góc ABM > góc MBC

0
14 tháng 3 2023

`a)`

`Delta ABC` có :

`hat(BAC)+hat(C_1)+hat(B)=180^0` ( đlý )

hay `80^0+hat(C_1)+60^0=180^0`

`=>hat(C_1)=40^0`

mà `hat(B)>hat(C_1)(60^0>40^0)`

nên `AC>AB`( Qhệ giữa góc và cạnh đối diện trong `Delta` )

`b)`

Có `M` là tđ của `BC`

`=>MB=MC`

Xét `Delta ABM` và `Delta CDM` có :

`{:(AM=DM(GT)),(hat(M_1)=hat(M_2)(đối.đỉnh)),(BM=MC(cmt)):}}`

`=>Delta ABM=Delta CDM(c.g.c)`

`=>AB=CD` ( 2 cạnh t/ứng )(đpcm)

14 tháng 3 2023

Giúp tôi

10 tháng 11 2021

a, Ta có \(\widehat{ABC}+\widehat{ACB}=90^0\Rightarrow3\widehat{ACB}=90^0\Rightarrow\left\{{}\begin{matrix}\widehat{ACB}=30^0\\\widehat{ABC}=60^0\end{matrix}\right.\)

b, Vì \(\left\{{}\begin{matrix}BM=MC\\AM=MD\\\widehat{AMC}=\widehat{BMD}\left(đối.đỉnh\right)\end{matrix}\right.\) nên \(\Delta ACM=\Delta DBM\left(c.g.c\right)\)

c, Vì \(\left\{{}\begin{matrix}AC=BD\left(\Delta ACM=\Delta DBM\right)\\AB.chung\\BC=AD\left(=2AM\right)\end{matrix}\right.\) nên \(\Delta ABC=\Delta BAD\left(c.c.c\right)\)

Do đó \(\widehat{BAC}=\widehat{ABD}=90^0\)

Vậy ...

1 tháng 2 2018

a) Xét tam giác AMB và tam giác DMC có:

BM = CM (gt)

AM =DM (gt)

\(\widehat{AMB}=\widehat{DMC}\)  (Hai góc đối đỉnh)

\(\Rightarrow\Delta AMB=\Delta CMD\left(c-g-c\right)\)

b) Do \(\Delta AMB=\Delta CMD\Rightarrow\widehat{BAM}=\widehat{DCM}\)

Chúng lại ở vị trí so le trong nên AB //CD.

c) Xét tam giác AME có MH là đường cao đồng thời trung tuyến nên tam giác AME cân tại M.

Suy ra MA = ME

Lại có MA = MD nên ME = MD.

d) Xét tam giac AED có MA = ME = MD nê tam giác AED vuông tại E.

Suy ra ED // BC

Xét tam giác cân MED có MK là trung tuyến nên đồng thời là đường cao.

Vậy thì \(MK\perp ED\Rightarrow MK\perp BC\)

6 tháng 12 2021

NGU