Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
G là trọng tâm \(\Leftrightarrow\left\{{}\begin{matrix}0+4+x_C=3.\dfrac{7}{3}\\2+0+y_c=3.1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_c=3\\y_c=1\end{matrix}\right.\Rightarrow C\left(3;1\right)\)
Có: `\vec(BC) (-1;1)`
`=>` PT: `-1(x-4)+1(y-0)=0 <=> -x+y+4=0`
a: vect OA=(3;-1)
vecto OB=(4;2)
Vì 3/4<>-1/2
nên O,A,B ko thẳng hàng
b: OABM là hình bình hành
nên vecto OA=vecto MB
=>4-x=3 và 2-y=-1
=>x=1 và y=3
c: Tọa độ I là:
x=(3+4)/2=3,5 và y=(-1+2)/2=0,5
\(M=\left(m;8m+4\right)\) là trung điểm AC.
\(\Rightarrow A=\left(2m+5;16m+14\right)\)
Mà \(A\in AH\Rightarrow2m+5+2\left(16m+14\right)+1=0\)
\(\Rightarrow m=-1\)
\(\Rightarrow A=\left(3;-2\right)\)
Đường thẳng BC đi qua \(C=\left(-5;-6\right)\) và vuông góc AH có phương trình:
\(2x-y+4=0\)
B có tọa độ là nghiệm của hệ \(\left\{{}\begin{matrix}8x-y+4=0\\2x-y+4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=4\end{matrix}\right.\Rightarrow B=\left(0;4\right)\)
a: vecto AB=(2-m;-2)
vecto AC=(-4-m;2)
Để A,B,C ko thẳng hàng thì \(\dfrac{2-m}{-4-m}< >\dfrac{-2}{2}=-1\)
=>2-m<>m+4
=>-2m<>2
=>m<>-1
b: Tọa độ trọng tâm là:
\(\left\{{}\begin{matrix}x=\dfrac{m+2-4}{3}=\dfrac{m-2}{3}\\y=\dfrac{3+1+5}{3}=3\end{matrix}\right.\)
Để M nằm trên d thì \(\left\{{}\begin{matrix}\dfrac{m-2}{3}=t+1\\5-2t=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}t=1\\m-2=3\cdot2=6\end{matrix}\right.\Leftrightarrow m=8\)
Đặt \(C\left(x;y\right)\)
Ta có: \(\left\{{}\begin{matrix}\overrightarrow{OM}=\left(2;4\right)\\\overrightarrow{CM}=\left(2-x;4-y\right)\end{matrix}\right.\)
Do O là trọng tâm tam giác và M là trung điểm AB \(\Rightarrow CM\) là trung tuyến
Theo tính chất trọng tâm:
\(\overrightarrow{CM}=3\overrightarrow{OM}\Rightarrow\left\{{}\begin{matrix}2-x=3.2\\4-y=3.4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-4\\y=-8\end{matrix}\right.\)
\(\Rightarrow C\left(-4;-8\right)\)