Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đường thẳng AB và vuông góc với 3x+2y-4=0 nên AB:2(x+1)-3(y+3)=0
AB:2x-3y-7=0
Xét hệ\(\begin{cases}2x-3y-7=0\\3x+2y-4\end{cases}\Rightarrow\begin{cases}x=2\\y=-1\end{cases}\)nên trung điểm AB là M(2;-1)
\(\Rightarrow B\left(5;1\right)\). Do đó \(C\left(8;-4\right)\)
Đường thẳng AB qua A và vuông góc với 3x+2y-4=0 nên AB: 2(x+1)-3(y+3)=0
AB: 2x-3y-7=0
Xét hệ \(\begin{cases}2x-3y-7=0\\3x+2y-4\end{cases}\Rightarrow\begin{cases}x=2\\y=-1\end{cases}\) nên trung điểm AB là M(2;-1)
Suy ra B(5;1). Do đó C(8;-4)
Đặt \(C\left(x;y\right)\)
Ta có: \(\left\{{}\begin{matrix}\overrightarrow{OM}=\left(2;4\right)\\\overrightarrow{CM}=\left(2-x;4-y\right)\end{matrix}\right.\)
Do O là trọng tâm tam giác và M là trung điểm AB \(\Rightarrow CM\) là trung tuyến
Theo tính chất trọng tâm:
\(\overrightarrow{CM}=3\overrightarrow{OM}\Rightarrow\left\{{}\begin{matrix}2-x=3.2\\4-y=3.4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-4\\y=-8\end{matrix}\right.\)
\(\Rightarrow C\left(-4;-8\right)\)
Bạn coi lại đề, 2 đường thẳng xuất phát từ B nhưng lại song song với nhau, điều này hoàn toàn vô lý
\(M=\left(m;8m+4\right)\) là trung điểm AC.
\(\Rightarrow A=\left(2m+5;16m+14\right)\)
Mà \(A\in AH\Rightarrow2m+5+2\left(16m+14\right)+1=0\)
\(\Rightarrow m=-1\)
\(\Rightarrow A=\left(3;-2\right)\)
Đường thẳng BC đi qua \(C=\left(-5;-6\right)\) và vuông góc AH có phương trình:
\(2x-y+4=0\)
B có tọa độ là nghiệm của hệ \(\left\{{}\begin{matrix}8x-y+4=0\\2x-y+4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=4\end{matrix}\right.\Rightarrow B=\left(0;4\right)\)
a: vecto AB=(2-m;-2)
vecto AC=(-4-m;2)
Để A,B,C ko thẳng hàng thì \(\dfrac{2-m}{-4-m}< >\dfrac{-2}{2}=-1\)
=>2-m<>m+4
=>-2m<>2
=>m<>-1
b: Tọa độ trọng tâm là:
\(\left\{{}\begin{matrix}x=\dfrac{m+2-4}{3}=\dfrac{m-2}{3}\\y=\dfrac{3+1+5}{3}=3\end{matrix}\right.\)
Để M nằm trên d thì \(\left\{{}\begin{matrix}\dfrac{m-2}{3}=t+1\\5-2t=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}t=1\\m-2=3\cdot2=6\end{matrix}\right.\Leftrightarrow m=8\)