K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 5 2017

Số hs chiếm số phần trăm của cả khối 5 là: 100%-25%-5%=70%

Số học sinh giỏi cả khối 5 là: 126:70x25=45 (Hs)

                                            Đáp số: 45 hs

15 tháng 12 2017

Số hs chiếm số phần trăm của cả khối 5 là: 100%-25%-5%=70%
Số học sinh giỏi cả khối 5 là: 126:70x25=45 (Hs)
Đáp số: 45 hs

chúc bn hok tốt @_@

2 tháng 7 2021

giúp mình bài này với 

 

a) Xét ΔABC có AB=AC(gt)

nên ΔABC cân tại A(Định nghĩa tam giác cân)

Suy ra: \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy)

hay \(\widehat{ABH}=\widehat{ACH}\)

b) Xét ΔABH và ΔACH có 

AB=AC(ΔABC cân tại A)

AH chung

BH=CH(H là trung điểm của BC)

Do đó: ΔABH=ΔACH(c-c-c)

Suy ra: \(\widehat{BAH}=\widehat{CAH}\)(hai góc tương ứng)

hay \(\widehat{MAE}=\widehat{NAE}\)

Xét ΔAME và ΔANE có 

AM=AN(gt)

\(\widehat{MAE}=\widehat{NAE}\)(cmt)

AE chung

Do đó: ΔAME=ΔANE(c-g-c)

c) Ta có: ΔAME=ΔANE(cmt)

nên \(\widehat{AEM}=\widehat{AEN}\)(hai góc tương ứng)

mà \(\widehat{AEM}+\widehat{AEN}=180^0\)(hai góc so le trong)

nên \(\widehat{AEM}=\widehat{AEN}=\dfrac{180^0}{2}=90^0\)

Suy ra: AH⊥MN tại E(1)

Ta có: ΔABH=ΔACH(cmt)

nên \(\widehat{AHB}=\widehat{AHC}\)(hai góc tương ứng)

mà \(\widehat{AHB}+\widehat{AHC}=180^0\)(hai góc kề bù)

nên \(\widehat{AHB}=\widehat{AHC}=\dfrac{180^0}{2}=90^0\)

Suy ra: AH⊥BC tại H(2)

Từ (1) và (2) suy ra MN//BC(Đpcm)

a) Ta có: \(\dfrac{AN}{AB}=\dfrac{3}{6}=\dfrac{1}{2}\)

\(\dfrac{AM}{AC}=\dfrac{4.5}{9}=\dfrac{1}{2}\)

Do đó: \(\dfrac{AN}{AB}=\dfrac{AM}{AC}\)\(\left(=\dfrac{1}{2}\right)\)

Xét ΔANM và ΔABC có 

\(\dfrac{AN}{AB}=\dfrac{AM}{AC}\)(cmt)

\(\widehat{BAC}\) chung

Do đó: ΔANM\(\sim\)ΔABC(c-g-c)

Xét ΔANM và ΔABC có

AN/AB=AM/AC

\(\widehat{NAM}\) chung

Do đó: ΔANM\(\sim\)ΔABC

16 tháng 3 2022

áp dụng định lí nào thế ạ

6 tháng 7 2017

A M N B C H K

a) Vẽ MH \(⊥\)BC ; NK \(⊥\)BC

tam giác MBH = tam giác NCK ( cạnh huyền, góc nhọn )

suy ra BH = CK

b) tam giác ABN = tam giác ACM ( c.g.c )

suy ra BN = CM

Dễ thấy MN // BC

suy ra MN = HK ( tính chất đoạn chắn )

Ta có : BN > BK ; CM > CH ( quan hệ giữa đường xiên và đường vuông góc )

Vậy BN + CM > BK + CH hay BN + BN > ( BH + HK ) + CH

2BN > ( BH + CH ) + HK ; 2BN > BC + MN \(\Rightarrow BN>\frac{BC+MN}{2}\)

8 tháng 3 2022

a, Ta có \(\dfrac{AM}{AB}=\dfrac{AN}{AC}=\dfrac{6}{8}=\dfrac{7,5}{10}=\dfrac{3}{4}\)

=> MN // BC (Ta lét đảo) 

b, Vì MN // BC 

Theo hệ quả Ta lét \(\dfrac{AM}{AB}=\dfrac{MN}{BC}\Leftrightarrow\dfrac{6}{8}=\dfrac{MN}{12}\Leftrightarrow MN=9cm\)