K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2017

A M N B C H K

a) Vẽ MH \(⊥\)BC ; NK \(⊥\)BC

tam giác MBH = tam giác NCK ( cạnh huyền, góc nhọn )

suy ra BH = CK

b) tam giác ABN = tam giác ACM ( c.g.c )

suy ra BN = CM

Dễ thấy MN // BC

suy ra MN = HK ( tính chất đoạn chắn )

Ta có : BN > BK ; CM > CH ( quan hệ giữa đường xiên và đường vuông góc )

Vậy BN + CM > BK + CH hay BN + BN > ( BH + HK ) + CH

2BN > ( BH + CH ) + HK ; 2BN > BC + MN \(\Rightarrow BN>\frac{BC+MN}{2}\)

15 tháng 8 2015

a) ta co AB=AC ( tam giac ABC can tai A)

              AN= AM ( gt)

---> AB-AN=AC-AM

---> BN=CM

b) cm tam giac ANM can tai A ( AN=AM)--> goc ANM = (180-A):2

ma goc ABC =(180-A):2 ( tam giac ABC can tai A)

nen goc ANM= goc ABC ma 2 gocnam o vi tri dong vi nen NM// BC==> tu giac BNMC la hinh thang--> hinh thang co hai goc B= goc C--> hinh thangcan

c> cm IK là đường trung bình hình thang NMCB==> IK= (NM+BC):2 = (6+10):2=9 cm

23 tháng 8 2016

DO NOT KNOW

a) Ta có: AM+MB=AB(M nằm giữa hai điểm A và B)

AN+NC=AC(N nằm giữa A và C)

mà MB=NC(gt)

và AB=AC(ΔABC cân tại A)

nên AM=AN

Xét ΔAMN có AM=AN(cmt)

nên ΔAMN cân tại A(Định nghĩa tam giác cân)

Ta có: ΔAMN cân tại A(cmt)

nên \(\widehat{AMN}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔAMN cân tại A)(1)

Ta có: ΔABC cân tại A(gt)

nên \(\widehat{ABC}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔABC cân tại A)(2)

Từ (1) và (2) suy ra \(\widehat{AMN}=\widehat{ABC}\)

b) Ta có: \(\widehat{AMN}=\widehat{ABC}\)(cmt)

mà hai góc này là hai góc ở vị trí đồng vị

nên MN//BC(Dấu hiệu nhận biết hai đường thẳng song song)

Xét tứ giác MNBC có MN//BC(cmt)

nên MNBC là hình thang có hai đáy là MN và BC(Định nghĩa hình thang)

Hình thang MNBC(MN//BC) có \(\widehat{MBC}=\widehat{NCB}\)(ΔABC cân tại A)

nên MNBC là hình thang cân(Dấu hiệu nhận biết hình thang cân)

 

c) Xét ΔAMN có 

E là trung điểm của AM(gt)

F là trung điểm của AN(gt)

Do đó: EF là đường trung bình của ΔAMN(Định nghĩa đường trung bình của hình thang)

Suy ra: EF//MN và \(EF=\dfrac{MN}{2}\)(Định lí 2 về đường trung bình của tam giác)

mà MN//BC(cmt)

nên EF//BC(3)

Xét hình thang MNCB(MN//CB) có 

H là trung điểm của MB(gt)

G là trung điểm của NC(gt)

Do đó: HG là đường trung bình của hình thang MNCB(Định nghĩa đường trung bình của hình thang)

Suy ra: HG//MN//BC và \(HG=\dfrac{MN+BC}{2}\)(Định lí 4 về đường trung bình của hình thang)(4)

Từ (3) và (4) suy ra EF//HG

Ta có: HG//BC(cmt)

nên \(\widehat{EHG}=\widehat{ABC}\) và \(\widehat{FGH}=\widehat{ACB}\)(Các cặp góc đồng vị)

mà \(\widehat{ABC}=\widehat{ACB}\)(ΔABC cân tại A)

nên \(\widehat{EHG}=\widehat{FGH}\)

Xét tứ giác EFGH có EF//HG(cmt)

nên EFGH là hình thang có hai đáy là EF và HG(Định nghĩa hình thang)

Hình thang EFGH(EF//HG) có \(\widehat{EHG}=\widehat{FGH}\)(cmt)

nên EFGH là hình thang cân(Dấu hiệu nhận biết hình thang cân)

a: AM=6-2=6cm

AN=12-3=9cm

=>AM/AB=AN/AC

=>MN//BC

b: Xet ΔAKC có NI//KC

nên NI/KC=AI/AK

Xét ΔABK có MI//BK

nên MI/BK=AI/AK

=>NI/KC=MI/BK

c: NI/KC=MI/BK

KC=KB

=>NI=MI

=>I là tđ của MN

a: Xét ΔMBE vuông tại E và ΔNCF vuông tại F có

MB=CN

\(\widehat{MBE}=\widehat{NCF}\left(=\widehat{ACB}\right)\)

Do đó: ΔMBE=ΔNCF

Suy ra: ME=NF

Xét ΔMEI vuông tại E và ΔNFI vuông tại F có

ME=NF

\(\widehat{EMI}=\widehat{FNI}\)

Do đó: ΔMEI=ΔNFI\(\left(cgv-gnk\right)\)

Suy ra: IE=IF

b: Ta có: CD=CN

mà CN=MB

nên MB=DC

Xét ΔBAC có 

\(\dfrac{MB}{BA}=\dfrac{CD}{AC}\)

nên MD//BC

Xét tứ giác BMDC có MD//BC

nên BMDC là hình thang

mà \(\widehat{MBC}=\widehat{DCB}\)

nên BMDC là hình thang cân 

7 tháng 9 2019

Từ M kẻ đường song song với AN cắt BC tại K.Gọi I là giao điểm của MN với BC

Ta có: tam giác ABC cân tại Á nên góc B=góc C. Mà MK//AN => góc MKB =góc ABC => góc MKB=góc B=> MB=MK=CN

=> 180độ - góc MKB=180 độ - góc B=> góc MKI=góc ICN

MÀ góc KMN=góc INA (so le trong).

Vậy tam giác MKI bằng tam giác NIC(g.c.g)=>MI=NI(cạnh tương ứng)

=> I là trung điểm của MN

=>đpcm

7 tháng 9 2019

A B C I M N H K

Mình xét mỗi trường hợp như hình vẽ mà thôi, còn nếu điểm M nằm ngoài đoạn AB thì cũng tương tự nha

Vẽ MH,NK cùng vuông góc với BC

Ta dễ thấy MB=NC

Xét \(\Delta BMH\)\(\Delta CNK\)\(\widehat{BHM}=\widehat{CKN}=90;BM=CN\)\(;\widehat{MBH}=\widehat{NCK}\)(vì cùng bằng với\(\widehat{ACB}\))

\(\Rightarrow\Delta BMH=\Delta CNK\left(CH.GN\right)\Rightarrow MH=NK\)

Xét \(\Delta MHI\)\(\Delta NKI\)\(\widehat{HMI}=\widehat{KNI}\)(2 góc so le trong và HM song song với KN);

\(HM=KN;\widehat{MHI}=\widehat{NKI}=90\)

\(\Rightarrow\Delta MHI=\Delta NKI\left(G.C.G\right)\Rightarrow MI=NI\)

Vậy I là trung điểm MN mà I là giao điểm của MN và BC nên ta có điều phải chứng minh

27 tháng 1 2018

giúp mình với