Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có AM/MB = AN/NC = 3/2 ⇒ MN//BC
b, Ta có MN//BC ⇒ MK//BI ⇒ MK/BI=AM/AB (Hệ quả đ/lí Talet) ⇒ MK=BI. AM/AB
C/m tương tự ta có NK=IC . AN/AC
mà theo câu a, AM/MB = AN/NC ⇒ NK=MK (ĐPCM)
a, Ta có :
\(\frac{AM}{MB}=\frac{3}{2},\frac{AN}{NC}=\frac{7,5}{5}=\frac{3}{2}\Rightarrow\frac{AM}{MB}=\frac{AN}{NC}\left(=\frac{3}{2}\right)\)
=> MN // BC ( định lí Talet đảo )
b, Ta có :
\(K\in MN;I\in BC\Rightarrow NK//CI;KM//BI\)
\(\Rightarrow\frac{NK}{CI}=\frac{AK}{AI},\frac{KM}{IB}=\frac{AK}{AI}\)
\(\Rightarrow\frac{NK}{CI}=\frac{KM}{IB}\left(=\frac{AK}{AI}\right)\)
Mà \(CI=IB\Rightarrow NK=KM\)
Vậy : K là trung điểm của NM
a: Xét ΔABC có AM/MB=AN/NC
nên MN//BC
b: Xét ΔABC có MN//BC
nên AM/AB=AN/AC(1)
Xét ΔABI có MK//BI
nên MK/BI=AM/AB(2)
Xét ΔACI có NK//CI
nên NK/IC=AN/AC(3)
Từ (1), (2) và (3) suy ra MK/BI=NK/CI
mà BI=CI
nên MK=NK
hay K là trung điểm của MN
a) ta có:
\(\dfrac{AM}{MB}=\dfrac{3}{2},\dfrac{AN}{NC}=\dfrac{7,5}{5}=\dfrac{3}{2}\Rightarrow\dfrac{AM}{MB}=\dfrac{AN}{NC}\left(=\dfrac{3}{2}\right)\)
\(\Rightarrow\) MN//BC( định lí talet đảo)
b) ta có \(K\in MN,I\in BC\Rightarrow NK\)//CI, KM//BI
\(\Rightarrow\dfrac{NK}{CI}=\dfrac{AK}{AI},\dfrac{KM}{IB}=\dfrac{AK}{AI}\\ \Rightarrow\dfrac{NK}{CI}=\dfrac{KM}{IB}\left(=\dfrac{AK}{AI}\right)màCI=IB\Rightarrow NK=KM\)
Vậy K là trung điểm NM
a: AM=6-2=6cm
AN=12-3=9cm
=>AM/AB=AN/AC
=>MN//BC
b: Xet ΔAKC có NI//KC
nên NI/KC=AI/AK
Xét ΔABK có MI//BK
nên MI/BK=AI/AK
=>NI/KC=MI/BK
c: NI/KC=MI/BK
KC=KB
=>NI=MI
=>I là tđ của MN