K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 12 2021

a: Xét ΔABE và ΔADE có 

AB=AD

ˆBAE=ˆDAEBAE^=DAE^

AE chung

Do đó: ΔABE=ΔADE

Suy ra: ˆABE=ˆADEABE^=ADE^

hay DE⊥⊥AC

30 tháng 11 2021

a: Xét ΔABE và ΔADE có 

AB=AD

\(\widehat{BAE}=\widehat{DAE}\)

AE chung

Do đó: ΔABE=ΔADE

Suy ra: \(\widehat{ABE}=\widehat{ADE}\)

hay DE\(\perp\)AC

c: Xét ΔBAC vuông tại B có 

\(\sin C=\dfrac{AB}{AC}=\dfrac{1}{2}\)

\(\Leftrightarrow\widehat{C}=30^0\)

hay \(\widehat{BAC}=60^0\)

a) Xét ΔABD vuông tại A và ΔEBD vuông tại E có 

BD chung

\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))

Do đó: ΔABD=ΔEBD(Cạnh huyền-góc nhọn)

Suy ra: AD=ED(Hai cạnh tương ứng)

24 tháng 12 2017

xét tam giác ADB và tam giác ADC có

AB=AC (gt)

BD=CD ( D là trung điễm BC)

BD cạnh chung

nên tam giác ADB= tam giác ADC (c.c.c)

7 tháng 5 2015

a, cm tam giac BAD=tam giac BED( c.g.c)\(\Rightarrow\)Góc BAD= Góc BED( góc tuong ứng)\(\Rightarrow\)BED= 90o\(\Rightarrow\)DE vuong BE

 

- BA=BE(gt) 

- chung AD

- góc ABD= góc EBD( BD lf tia P.g)

b,xét tam giác BAE có BA=BE(Gt)

\(\Rightarrow\)tam giac BAE Cân tại B

Mà BD là dường phân giác

\(\Rightarrow\)BD đồng thời là đường trung trực của AE

Mới làm dk 2fan nay

7 tháng 5 2017

Kẻ EK vuông góc với DC
Do AH//DC ( vì cùng vuông góc với BC)
nên góc HAE bằng góc DEA( slt)
mà góc DAE bằng góc DEA( Do tam giác ADE có DA=DE nên Tam giác ADE cân tại D)
suy ra góc HAE bằng góc DAE
xét tam giác HAE và tam giác KAE:
.AE là cạnh huyền chung
.góc HAE bằng góc DAE
suy ra :tam giác HAE = tam giác KAE( ch-gn)
suy ra EH=EK (1)
Ta lại có  tam giác EKC vuông tại K nên:
EK<EC( cạnh góc vuông bé hơn cạnh huyền) (2)
Từ (1) và (2) suy ra EH<EC

3. Cho tam giác ABC vuông tại A, có BD là tia phân giác. Kẻ DH vuông góc với BC (E thuộc BC). Gọi F là giao điểm của BA và ED. Chứng minh :a) BD là đường trung trực AEb) DF=DCc) AD<DC4. Cho tam giác ABC vuông tại A, tia phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc với BC( H thuộc BC). GỌi K là giao điểm của AB và HE. Chứng minh rằng: a) tam giác ABE = tam giác HBEb) BE là đường trung trực của đoạn thẳng...
Đọc tiếp

3. Cho tam giác ABC vuông tại A, có BD là tia phân giác. Kẻ DH vuông góc với BC (E thuộc BC). Gọi F là giao điểm của BA và ED. Chứng minh :

a) BD là đường trung trực AE

b) DF=DC

c) AD<DC

4. Cho tam giác ABC vuông tại A, tia phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc với BC( H thuộc BC). GỌi K là giao điểm của AB và HE. Chứng minh rằng: 

a) tam giác ABE = tam giác HBE

b) BE là đường trung trực của đoạn thẳng AH.

c) EK = EC và AE < EC

5. Cho tam giác ABC cân tại A (AB = AC), trung tuyến AM. Gọi D là một điểm nằm giữa A và M.

Chứng minh :
a) AM là tia phân giác góc A

b) tam giác ABD = tam giác ACD

c) tam giác BCD là tam giác cân

6.  Cho tam giác ABC vuông tại A. Tia phân giác của góc ABC cắt AC tại D. Từ D kẻ DH vuông góc với BC tại H và DH cắt AB tại K.

a) Chứng minh : AD=DH

b) So sánh độ dài hai cạnh AD và DC

c) Chứng minh tam giác KBC là tam giác cân

1
29 tháng 4 2016

5 )

tự vẽ hình nha bạn 

a)

Xét tam giác ABM và tam giác ACM  có :

AM  cạnh chung 

AB = AC (gt)

BM = CM  (gt)

suy ra : tam giác ABM = tam giác ACM ( c-c-c)

suy ra : góc BAM =  góc CAM  ( 2 góc tương ứng )

Hay AM  là tia phân giác của góc A

b)

Xét tam giác ABD  và tam giác ACD có :

AD cạnh chung 

góc BAM  = góc CAM ( c/m câu a)

AB = AC (gt)

suy ra tam giác ABD  = tam giác ACD ( c-g-c)

suy ra : BD = CD ( 2 cạnh tương ứng)  

C) hay tam giác BDC cân tại D