Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
\(\widehat{BAD}\) chung
Do đó: ΔABD=ΔACE
b: Ta có: ΔABD=ΔACE
nên AD=AE
Ta có: AE+EB=AB
AD+DC=AC
mà AB=AC
và AD=AE
nên EB=DC
Xét ΔEBO vuông tại E và ΔDCO vuông tại D có
EB=DC
\(\widehat{EBO}=\widehat{DCO}\)
Do đó: ΔEBO=ΔDCO
c: Xét ΔABO và ΔACO có
AB=AC
BO=CO
AO chung
DO đó:ΔABO=ΔACO
Suy ra: \(\widehat{BAO}=\widehat{CAO}\)
hay AO là tia phân giác của góc BAC
1. Ta có: \(\widehat{A}+\widehat{ABM}+\widehat{AMB}=\widehat{A}+\widehat{ACN}+\widehat{ANC}=180^0\)(theo định lí tổng 3 góc của tam giác)
\(\Rightarrow\widehat{A}+\widehat{ABM}+90^0=\widehat{A}+\widehat{ACN}+90^0\)
\(\Rightarrow\widehat{ABM}=\widehat{ACN}\)
2. Vì Bx vuông góc với AB
CN vuông góc với AB
\(\Rightarrow\)Bx // CN
hay CH // BD
Vì Cy vuông góc với AC
BM vuông góc với AC
\(\Rightarrow\)BM // Cy
hay BH // Cy
3. Ta có: BH // CD cắt CH // BD
\(\Rightarrow\)BH = CD và CH = BD (theo tính chất đoạn chắn)
* Tính chất đoạn chắn: Nếu 2 đường thẳng song song cắt 2 đường thẳng song song thì chúng bằng nhau
c: Bx//CE
mà CE⊥AB
nên Bx⊥AB
Cy//BD
mà BD⊥AC
nên AC⊥Cy