Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔABC có BM là đường phân giác
nên AM/AB=CM/CB
=>AM/3=CM/5
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AM}{3}=\dfrac{CM}{5}=\dfrac{AM+CM}{3+5}=\dfrac{4}{8}=\dfrac{1}{2}\)
Do đó: AM=1,5(cm)
Xét ΔABM vuông tại A và ΔDEF vuông tại D có
AB/DE=AM/DF
Do đó: ΔABM\(\sim\)ΔDEF
a: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
b: Xét ΔAHB vuông tại H và ΔCHA vuông tại H có
góc HAB=góc HCA
=>ΔAHB đồng dạng với ΔCHA
c: Xét ΔABC có BD làphân giác
nên DA/AB=DC/BC
=>DA/3=DC/5=(DA+DC)/(3+5)=8/8=1
=>DA=3cm; DC=5cm
Giải
a) Vì AD là phân giác của góc BAC nên theo tính chất của đường phân giác có :\(\frac{AB}{AC}=\frac{BD}{CD}\)
Mà AB = 6cm , AC = 8cm nên thay vào ta được : \(\frac{6}{8}=\frac{BD}{CD}hay\frac{BD}{6}=\frac{CD}{8}\)
Theo tính chất của dãy tỉ sỗ bằng nhau ta có :
\(\frac{BD}{6}=\frac{CD}{8}=\frac{BD+CD}{^{6+8}}=\frac{10,5}{14}=\frac{3}{4}\)
=> BD = (3.6):4 =4,5 cm và CD = 10,5 - 4,5 = 6cm
Vậy BD = 4,5cm ; CD = 6cm
Sorry , mình chưa nghĩ ra ý B .
a. ta có \(\hept{\begin{cases}\frac{DB}{DC}=\frac{AB}{AC}=\frac{10}{25}=\frac{2}{5}\\BD+DC=BC=30\end{cases}\Rightarrow\hept{\begin{cases}DB=\frac{60}{7}\\DC=\frac{150}{7}\end{cases}}}\)
mà \(\frac{DE}{AB}=\frac{CD}{CB}=\frac{5}{7}\Rightarrow DE=\frac{50}{7}cm\)
b.ta có \(\frac{S_{ABD}}{S_{ABC}}=\frac{BD}{BC}=\frac{2}{7}\Rightarrow S_{ABD}=\frac{120.2}{7}=\frac{240}{7}cm^2\Rightarrow S_{ACD}=S_{ABC}-S_{ABD}=\frac{600}{7}\)
mà
\(\frac{S_{AED}}{S_{ADC}}=\frac{AE}{AC}=\frac{BD}{BC}=\frac{2}{7}\Rightarrow S_{AED}=\frac{600}{7}\frac{.2}{7}=\frac{1200}{49}cm^2\Rightarrow S_{CDE}=S_{ACD}-S_{AED}=\frac{3000}{49}\)
Theo định lí Pytago tam giác ABC vuông tại A
\(AC=\sqrt{BC^2-AB^2}=8cm\)
Vì AD là pg nên \(\frac{BD}{DC}=\frac{AB}{AC}\Rightarrow\frac{BD}{AB}=\frac{DC}{AC}\)
Theo tc dãy tỉ số bằng nhau
\(\frac{BD}{AB}=\frac{DC}{AC}=\frac{BC}{AB+AC}=\frac{10}{14}=\frac{5}{7}\Rightarrow BD=\frac{30}{7}cm;CD=\frac{40}{7}cm\)