Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBAD và ΔBED có
BA=BE
góc ABD=góc EBD
BD chung
=>ΔBAD=ΔBED
=>DA=DE
b: ΔBAD=ΔBED
=>góc BAD=góc BED=90 độ
=>DE vuông góc BC
c: góc EDC+góc C=90 độ
góc B+góc C=90 độ
=>góc EDC=góc ABC
a: Xét ΔBAD và ΔBED có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔABD=ΔEBD
Suy ra: DA=DE
a) Vì BD là phân giác của ABC nên ABD = CBD
Xét Δ ABD và Δ EBD có:
BA = BE (gt)
ABD = EBD (cmt)
BD là cạnh chung
Do đó, Δ ABD = Δ EBD (c.g.c)
=> AD = DE (2 cạnh tương ứng) (đpcm)
b) Δ ABD = Δ EBD (câu a) => BAD = BED = 90o (2 góc tương ứng)
=> Δ DEC vuông tại E
Δ ABC vuông tại A có: ABC + C = 90o (1)
Δ CED vuông tại E có: EDC + C = 90o (2)
Từ (1) và (2) => ABC = EDC (đpcm)
c) Gọi giao điểm của AE và BD là H
Xét Δ ABH và Δ EBH có:
AB = BE (gt)
ABH = EBH (câu a)
BH là cạnh chung
Do đó, Δ ABH = Δ EBH (c.g.c)
=> BHA = BHE (2 góc tương ứng)
Mà BHA + BHE = 180o (kề bù) nên BHA = BHE = 90o
=> BH⊥AEBH⊥AE hay BD⊥AE(đpcm)
a) Xet tam giac ABD va tam giac EBD co :
AB=BE (gt)
Goc B1=goc B2 ( BD la tia phan giac cua goc ABC)
BD chung
Suy ra tam giac ABD = tam giac EBD (c-g-c)
b) Goi I la giao diem cua AE va BD
Xet tam giac BAI va tam giac BEI co :
AB=BE(gt)
Goc B1=goc B2 ( BD la tia phan giac cua goc ABC)
AI chung
Suy ra tam giac BAI = tam giac BEI (c-g-c)
Suy ra goc I1=goc I2 ( hai goc tuong ung)
Ma goc I1+I2=180do ( hai goc ke bu)
Suy ra goc I1=goc I2=180 do:2=90 do (1)
Suy ra BI vuong goc voi AE ( dinh nghia) (2)
Tu (1) va (2) ta suy ra BD la duong trung truc cua AE
c) Tam giac ABD = tam giac EBD (cmt)
Suy ra goc BAD= goc BED ( hai goc tuong ung)
Ma goc BAD =90 do(gt)
Suy ra goc EBD=90 do
Suy ra ED vuong goc voi BC ( dinh nghia )
Ma AH vuong goc voi BC (gt)
Suy ra AH // DE ( theo quan he tu vuong goc den song song)
d) Tam giac ABC co:
Goc ABC + goc BAC +goc C=180 do ( dinh li tong ba goc trong tam giac)
Suy ra goc ABC=180 do -(goc BAC +goc C)
Hay goc ABC =180 do -(90 do+ goc C)(1)
Tam giac EDC co:
Goc EDC+ goc DEC + goc C=180 do ( dinh li tong ba goc trong tam giac)
Suy ra goc EDC=180 do -(goc DEC +goc C)
Hay goc EDC=180 do -(90 do + goc C)(2)
Tu (1) va (2) ta suy ra goc ABC= goc EDC (=180do-(90 do+goc C))
Nho mik nh ban !
Xét tam giác ABC có : góc ABC + góc ACB + góc BAC = 180 (đl)
góc BAC = 80(Gt); góc ABC = 60 (gt)
=> góc ACB = 180 - 80 - 60 = 40
=> góc ACB < góc ABC < góc BAC ; tam giác ABC
=> AB < AC < BC (đl)
b, xét tam giác ABE và tam giác DBE có : BE chung
AB = BD (gt)
góc ABE = góc DBE do BE là phân giác của góc ABC (gt)
=> tam giác ABE = tam giác DBE (c-g-c)
c, xét tam giác BAD có : AB = BD (gt) => tam giác BAD cân tại B (đn)
mà góc ABC = 60 (gt)
=> tam giác BAD đều (tc)
=> AD = AB (Đn)
BE là phân giác của góc ABC (Gt) => góc ABE = 1/2.góc ABC mà góc ABC = 60 (gt)
=> góc ABE = 12.60 = 30
Xét tam giác ABE có : góc ABE + góc AEB + góc BAE = 180 (đl)
góc BAE = 80 (gt)
=> góc AEB = 180 - 80 - 30 = 70
=> góc AEB < góc BAE ; tam giác BAE
=> AB < BE hay AD < BE (đl)
d, không biết
a: Xét ΔBAD và ΔBHD có
BA=BH
\(\widehat{ABD}=\widehat{HBD}\)
BD chung
Do đó: ΔBAD=ΔBHD
a) Xét tam giác ABD và tam giác EBD có:
+ ^ABD = ^EBD (do BD là phân giác ^B).
+ BD chung.
+ AB = BE (gt).
=> Tam giác ABD = Tam giác EBD (c - g - c).
=> DA = DE (2 cạnh tương ứng).
b) Tam giác ABD = Tam giác EBD (cmt).
=> ^BAD = ^BED (2 góc tương ứng).
Mà ^BAD = 90o (gt).
=> ^BED = 90o.
a: Xét ΔBAD và ΔBED có
BA=BE
góc ABD=góc EBD
BD chung
=>ΔBAD=ΔBED
=>DA=DE
b: CK vuông góc AC
AB vuông góc AC
=>CK//AB
=>góc CKB=góc ABD
=>góc CKB=góc CBD
=>ΔCBK cân tại C
d: ΔABD vuông tại A
=>góc ADB<90 độ
=>góc BDC>90 độ
=>BD<BC