Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Áp dụng tính chất 2 tiếp tuyến tại A,B,C ta chứng minh được b + c - a 2 = AD
b, S A B C = S A I B + S B I C + S C I A
Mà ID = IE = IF = r => S A B C = p.r
c, Vì AM là phân giác của B A C ^ => B M M C = B A A C
Áp dụng tính chất tỉ lệ thức thu được BM = a c c + b
Dễ thấy: MF là đường trung bình của \(\Delta\)PQC => MF // PC => ^FMP = ^APQ (So le trong)
Do PQ là tiếp xúc với đường tròn (MEF) nên ^FMP = ^MEF (Cùng chắn cung MF lớn)
=> ^APQ = ^MEF. Tương tự: ^AQP = ^MFE => \(\Delta\)PAQ ~ \(\Delta\)EMF (g.g) => \(\frac{ME}{AP}=\frac{MF}{AQ}\)
Mà ME = BQ/2; MF = CP/2 => \(\frac{BQ}{AP}=\frac{CP}{AQ}\) (*)
Trên cạnh AB lấy điểm K, trên cạnh AC lấy điểm N sao cho AK=BQ; AN=CP, thế vào (*) => \(\frac{AK}{AP}=\frac{AN}{AQ}\)
=> \(\Delta\)AKP ~ \(\Delta\)ANQ (c.g.c) => ^AKP = ^ANQ => Tứ giác KPNQ nội tiếp
Dễ dàng chứng minh: \(\Delta\)OAK = \(\Delta\)OBQ (c.g.c) => OK=OQ => O nằm trên trung trực KQ
Tương tự: OP=ON => O nằm trên trung trực của PN.
Từ đó: O là giao điểm 2 đường trung trực của KQ,PN. Lại có: Tứ giác KPNQ nội tiếp (cmt)
=> O là tâm đường tròn (KPNQ) => OP=OQ (đpcm).
a, ^BOD + ^OBD = 120 = ^BOD + ^EOC (vì ^DOE = 60)
=> ^BDO = ^EOC
=> ∆BDO đồng dạng ∆COE
=> BD/BO = CO/CE
<=> BD.CE = BC²/4
b, DO/OE = BD/CO
<=> BO/OE = BD/OD
=> ∆BOD đồng dạng ∆OED
=> ^BDO = ^ODE
=> OD là tia phân giác của góc BDE
c, kẻ OI,OK lần lượt vuông góc với AB,DE
AB tiếp xúc với (O;OI)
có ∆IOD = ∆KOD (cạnh huyền góc nhọn)
=> OI = OK
mà OK ┴ DE
=> (O) luôn tiếp xúc với DE