Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng địnhlý hàm cos:
\(BC=\sqrt{AB^2+AC^2-2AB.AC.cosBAC}=\sqrt{19}\)
\(\Rightarrow cosB=\dfrac{AB^2+BC^2-AC^2}{2AB.BC}=\dfrac{\sqrt{19}}{38}\)
\(BM=2MC\Rightarrow BM=\dfrac{2}{3}BC=\dfrac{2\sqrt{19}}{3}\)
\(\Rightarrow AM=\sqrt{AB^2+BM^2-2AB.BM.cosB}=\dfrac{\sqrt{139}}{3}\)
Chọn C.
Theo định lí hàm cosin, ta có :
Do MC = 2MB nên BM = 1/3.BC = 2.
Theo định lí hàm cosin, ta có: AM2 = AB2 + BM2 - 2AB.BM.cos B = 42 + 22 -2.4.2.1/2 = 12
Do đó: .
\(AM=AB+BM=13\left(cm\right)\)
\(AN=AC+CN=16\left(cm\right)\)
\(S_{ABC}=\dfrac{1}{2}AB.AC.sinA\Rightarrow sinA=\dfrac{2S_{ABC}}{AB.AC}=\dfrac{3}{4}\)
\(\Rightarrow S_{AMN}=\dfrac{1}{2}AM.AN.sinA=\dfrac{1}{2}.13.16.\dfrac{3}{4}=...\)
Chọn C.
Trong tam giác ABC có a = 6 nên BC = 6 mà BM = 3
suy ra M là trung điểm BC
Suy ra:
\(BC=\sqrt{AB^2+AC^2-2AB.AC.cosA}=2\sqrt{13}\)
\(BM=\frac{3}{4}BC=\frac{3\sqrt{13}}{2}\)
\(cosB=\frac{BA^2+BC^2-AC^2}{2BA.BC}=\frac{\sqrt{13}}{13}\)
\(\Rightarrow AM=\sqrt{AB^2+BM^2-2AB.BM.cosB}=\frac{3\sqrt{21}}{2}\)
Do quá dài nên mình ghi luôn nha
AM = 6,87 = \(\frac{3\sqrt{21}}{2}\)