K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
14 tháng 11 2019

\(BC=\sqrt{AB^2+AC^2-2AB.AC.cosA}=2\sqrt{13}\)

\(BM=\frac{3}{4}BC=\frac{3\sqrt{13}}{2}\)

\(cosB=\frac{BA^2+BC^2-AC^2}{2BA.BC}=\frac{\sqrt{13}}{13}\)

\(\Rightarrow AM=\sqrt{AB^2+BM^2-2AB.BM.cosB}=\frac{3\sqrt{21}}{2}\)

13 tháng 11 2019

Do quá dài nên mình ghi luôn nha

AM = 6,87 = \(\frac{3\sqrt{21}}{2}\)

NV
12 tháng 12 2021

Áp dụng địnhlý hàm cos:

\(BC=\sqrt{AB^2+AC^2-2AB.AC.cosBAC}=\sqrt{19}\)

\(\Rightarrow cosB=\dfrac{AB^2+BC^2-AC^2}{2AB.BC}=\dfrac{\sqrt{19}}{38}\)

\(BM=2MC\Rightarrow BM=\dfrac{2}{3}BC=\dfrac{2\sqrt{19}}{3}\)

\(\Rightarrow AM=\sqrt{AB^2+BM^2-2AB.BM.cosB}=\dfrac{\sqrt{139}}{3}\)

14 tháng 8 2017

Chọn C.

Theo định lí hàm cosin, ta có : 

Do MC = 2MB nên BM = 1/3.BC = 2.

Theo định lí hàm cosin, ta có: AM2 = AB2 + BM2 - 2AB.BM.cos B = 42 + 22 -2.4.2.1/2 = 12

Do đó: .

19 tháng 5 2017

Tích vô hướng của hai vectơ và ứng dụng

Tích vô hướng của hai vectơ và ứng dụng

NV
11 tháng 3 2022

\(AM=AB+BM=13\left(cm\right)\)

\(AN=AC+CN=16\left(cm\right)\)

\(S_{ABC}=\dfrac{1}{2}AB.AC.sinA\Rightarrow sinA=\dfrac{2S_{ABC}}{AB.AC}=\dfrac{3}{4}\)

\(\Rightarrow S_{AMN}=\dfrac{1}{2}AM.AN.sinA=\dfrac{1}{2}.13.16.\dfrac{3}{4}=...\)

4 tháng 7 2019

Chọn C.

Trong tam giác   ABC có a = 6 nên BC = 6 mà BM = 3

suy ra M là trung điểm BC

Suy ra: