Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Xét hai tam giác vuông ΔABHΔABH và ΔACHΔACH có:
AHAH cạnh chung
AB=AC=10cmAB=AC=10cm (gt)
Vậy ΔABH=ΔACHΔABH=ΔACH (cạnh huyền- cạnh góc vuông)
HC=HBHC=HB (hai cạnh tương ứng) hay H là trung điểm BC
2. BH=HC=BC2=122=6BH=HC=BC2=122=6 cm
Áp dụng định lí Py-ta-go vào ΔΔ vuông ABHABH có:
AH2=AB2−HB2=102−62=64⇒AH=8AH2=AB2−HB2=102−62=64⇒AH=8 cm
3. Xét ΔAKEΔAKE và ΔAKHΔAKH có:
AKAK chung
ˆAKE=ˆAKH=90oAKE^=AKH^=90o (do HK⊥ACHK⊥AC)
KE=KHKE=KH (do giả thiết cho K là trung điểm của HE)
⇒ΔAKE=ΔAKH⇒ΔAKE=ΔAKH (c.g.c)
⇒AE=AH⇒AE=AH (hai cạnh tương ứng) (1)
Cách khác để chứng minh AE=AH
Do ΔAHEΔAHE có K là trung điểm của HE nên AK là đường trung tuyến,
Có HK⊥ACHK⊥AC hay AK⊥HEAK⊥HE nên AK là đường cao
ΔAHEΔAHE có AK là đường trung tuyến cũng là đường cao nên ΔAHEΔAHE cân đỉnh A nên AE=AH.
4. Ta có HI⊥ABHI⊥AB hay AI⊥DH⇒AI⊥DH⇒ AI là đường cao của ΔADHΔADH
Mà IH=ID nên AI cũng là đường trung tuyến ΔADHΔADH
Vậy ΔAEHΔAEH cân tại A
Nên AD=AH (2)
Từ (1) và (2) suy ra AE=AD hay ΔAEDΔAED cân tại A.
5. Xét 2 tam giác vuông ΔAHIΔAHI và ΔAHKΔAHK có:
AH chung
ˆIAH=ˆKAHIAH^=KAH^ (hai góc tương ứng của ΔABH=ΔACHΔABH=ΔACH)
⇒ΔAHI=ΔAHK⇒ΔAHI=ΔAHK (cạnh huyền- góc nhọn)
⇒HI=HK⇒2HI=2HK⇒HD=HE⇒HI=HK⇒2HI=2HK⇒HD=HE
Mà ta có AD=AEAD=AE (cmt)
⇒AH⇒AH là đường trung trực của DE⇒AH⊥DEDE⇒AH⊥DE mà AH⊥BCAH⊥BC
⇒DE//BC⇒DE//BC
6. Để A là trung điểm ED thì DA⊥AHDA⊥AH mà ΔADHΔADH cân (cmt) nên ΔADHΔADH vuông cân đỉnh A.
Có AIAI là đường cao, đường trung tuyến nên AIAI cũng là đường phân giác nên
ˆDAI=ˆHAI=90o2=45oDAI^=HAI^=90o2=45o
⇒ˆIAH=ˆBAH=ˆCAH=45o⇒IAH^=BAH^=CAH^=45o (do ΔABH=ΔACHΔABH=ΔACH)
⇒ˆBAC=ˆBAH+ˆCAH=90o⇒BAC^=BAH^+CAH^=90o và ΔABCΔABC cân đỉnh A
⇒ΔABC⇒ΔABC vuông cân đỉnh A.
Vậy nếu ΔABCΔABC vuông cân đỉnh A thì AA là trung điểm của DE.
XÉT TAM GIÁC AHB VÀ TAM GIÁC AHC CÓ
AB=AC(GT)
AH CHUNG
GÓC AHB = GÓC AHC
=>TAM GIÁC AHB=TAM GIÁC AHC (CGC)
C,XÉT TAM GIÁC AHE VÀ TAM GIÁC AFH CÓ
AH CHUNG
GÓC AEH=GÓC AFH =90*
A1=A2
=>TAM GIÁC AHE=TAM GIÁC AFH (GCG)
=>HE=HF (CẠNH TƯƠNG ỨNG)
a: Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC
AH chung
Do đó: ΔABH=ΔACH
Suy ra: \(\widehat{BAH}=\widehat{CAH}\)
hay AH là tia phân giác của góc BAC
b: Xét ΔEAH vuông tại E và ΔFAH vuông tại F có
AH chung
\(\widehat{EAH}=\widehat{FAH}\)
Do đó: ΔEAH=ΔFAH
Suy ra: HE=HF
hay ΔHEF cân tại H
c: Xét ΔACK và ΔABK có
AC=AB
\(\widehat{CAK}=\widehat{BAK}\)
AK chung
Do đó: ΔACK=ΔABK
Suy ra: \(\widehat{ACK}=\widehat{ABK}=90^0\)
=>BK\(\perp\)AB
hay BK//EH
a) Vì tam giác ABC cân tại A suy ra AC=AC (T/chất), góc B= góc C
Xét tam giác ABH và tam giác ACH
Có: AB=AC (Vì tam giác ABC cân tại A)
AH chung
HB=HB (GT)
suy ra tam giác ABH = tam giác ACH (c.c.c) (1)
b) Vì HB=HC=BC/2=6/2=3 (cm)
Từ (1) suy ra góc AHB=góc AHC (2 góc tương ứng)
mà góc AHB=góc AHC=180 độ
suy ra góc AHB=góc AHC=90 độ
Xét tam giác AHB vuông tại H suy ra AB^2=AH^2+BH^2 (Định lý pytago)
suy ra 5^2=AH^2+3^2
25=AH^2+9
suy ra AH^2=16 suy ra AH=4(cm) vì AH >0
c) Xét tam giác vuông AHE và tam giác vuông AHF
có AH chung
góc HAE=góc HAF ( theo câu a)
suy ra tam giác AHE =tam giác AHF (cạnh huyền-góc nhọn)
suy ra AE=AF suy ra A thuộc đường TT của EF (3)
HE=HF suy ra H thuộc đường TT của EF (4)
từ (3) và (4) suy ra AH là đường TT của EF
a, Ta thấy AB là là trung trực của EH nên AE= AH
tương trự AC là trung trực của HF nên AF=AH
Xét tam giác AEF có AF=AE
vậy tram giác AEF cân tại A
b, Ta thấy BA là trung trực EH nên AEH=AHE
IEH=IHE
suy ra AEI =AHI
Tương tự ta suy ra được được AHK=AFK
mà AFK=AEI nên AHI=AHK
vậy HA là tia phân giác của IHK
a) Xét tam giác ABC cân tại A: AH là đường cao (AH vuông góc với BC).
=> AH là đường phân giác góc A (Tính chất tam giác cân).
b) Xét tam giác ABC cân tại A: AH là đường cao (AH vuông góc với BC).
=> AH là đường trung tuyến (Tính chất tam giác cân).
=> H là trung điểm của BC.
=> BH = HC = \(\dfrac{1}{2}\) BC = \(\dfrac{1}{2}\).8 = 4 (cm).
Xét tam giác AHB vuông tại A:
Ta có: \(AB^2=AH^2+BH^2H^2\) (Định lý Pytago).
=> \(5^2=AH^2+4^2.\) => \(AH^2=5^2-4^2=9.\)
=> AH = 3 (cm).
c) Xét tam giác AHD vuông tại D và tam giác AHE vuông tại A:
AH chung.
Góc DAH = Góc EAH (AH là đường phân giác góc A).
=> Tam giác AHD = Tam giác AHE (ch - gn).
=> HD = HE (2 cạnh tương ứng).
=> Tam giác DHE cân tại H.
a, Vì \(\left\{{}\begin{matrix}\widehat{BAH}=\widehat{CAH}\\\widehat{AHB}=\widehat{AHC}=90^0\\AH.chung\end{matrix}\right.\) nên \(\Delta AHB=\Delta AHC\left(g.c.g\right)\)
Do đó \(AB=AC;\widehat{B}=\widehat{C}\)
b, Vì \(\Delta AHB=\Delta AHC\) nên \(BH=HC\) hay H là trung điểm BC
Mà AH vuông góc BC tại H nên AH là trung trực BC
c, Vì \(\left\{{}\begin{matrix}\widehat{B}=\widehat{C}\\\widehat{BEH}=\widehat{CFH}=90^0\\BH=HC\end{matrix}\right.\) nên \(\Delta BHE=\Delta CHF\left(ch-gn\right)\)
phần D nữa bạn