Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)xét tam giác AMB và tam giác AMC
AB=AC ( giả thiết )
AM cạnh chung
BM = CM (M là trung điểm cạnh BC)
Vậy tam giác AMB = tam giác AMC
b.ta có : tam giác ABC = tam giác BAM + tam giác MAC =180 (định lí tổng 3 góc )
Xuy ra : tam giác BAM = tam giác MAC = 180/2=90
Xuy ra : AM vuông góc BC
a) Vì ΔABC có: AB=AC(gt)
=> ΔABC cân tại A
=> góc ABC= góc ACB
Xét ΔAMB và ΔAMC có:
AB=AC(gt)
góc ABM= góc ACM (cmt)
MB=MC(gt)
=> ΔAMB=ΔAMC (c.g.c)
=> góc AMB= góc AMC
b) Có góc AMB + góc AMC =180 ( cặp góc kề bù)
Mà góc AMB = góc AMC
=> góc AMB= góc AMC =90
=> AM vuông góc BC
c) Vì ΔAMB=ΔAMC(cmt)
=>góc MAB= góc MAC
Xét ΔAHM và ΔAKM có:
AH=AK(gt)
góc MAH = góc MAK (cmt)
AM: cạnh chung
=> ΔAHM =ΔAKM (c.g.c)
=> góc AMH = góc AMK
=> MA là tia pg của góc HMK
d) Vì: AB=AH+HB
AC=AK+KC
Mà: AB=AC(gt) ; AH=AK(gt)
=> HB=KC
Xét ΔBHM và ΔCKM có:
BH=CK(cmt)
góc HBM= góc KCM (cmt)
MB=MC(gt)
=> ΔBHM = ΔCKM (c.g.c)
a, xét tam giác AMB và tam giác AMC có:
AB=AC(gt)
\(\widehat{BAM}\) =\(\widehat{CAM}\)(gt)
AM chung
suy ra tam giác AMB= tam giác AMC(c.g.c)
b,xét tam giác AHM và tam giác AKM có:
AM cạnh chung
\(\widehat{HAM}\)=\(\widehat{KAM}\)(gt)
suy ra tam giác AHM=tam giác AKM(CH-GN)
Suy ra AH=AK
c,gọi I là giao điểm của AM và HK
xét tam giác AIH và tam giác AIK có:
AH=AK(theo câu b)
\(\widehat{IAH}\)=\(\widehat{IAK}\)(gt)
AI chung
suy ra tam giác AIH=tam giác AIK (c.g.c)
Suy ra \(\widehat{AIH}\)=\(\widehat{AIK}\)mà 2 góc này ở vị trí kề bù nên \(\widehat{AIH}\)=\(\widehat{AIK}\)= 90 độ
\(\Rightarrow\)HK vuông góc vs AM
a
vì AM là tia phân giác của góc A=>góc BAM=CAM
xét tam giác AMB và tam giác AMC có:
góc BAM=CAM,AM chung,AB=AC=>tam giác AMB = tam giác AMC
b
vì tam giác AMB = tam giác AMC=>MB=MC=>M là trung điểm BC
vì tam giác AMB = tam giác AMC=>góc BAM=CAM mà góc BAM+CAM=180=>BAM=CAM=180 độ/2=90 độ=>AM vuông góc với BC
c
xét tam giác ABM và KCM có
MB=MC,MA=MK,góc BMA=CMK(vì đối đỉnh)=>tam giác ABM = KCM=>AB=CK
vì tam giác ABM = KCM=>góc ABM=KMB mà 2 góc trên ở vị trí so le trog=>AB//CK
Ta có : AB = AC => tam giác ABC cân tại A
Ta lại có :
B = C ( do ABC cân )
AH chung
BM = MC ( gt )
=> AMB = AMC ( c- g - c )
b) Ta có ABC cân
MÀ M là trung điểm của BC
=> AM là đường cao của ABC
=> AM vuông với BC
a) Xét \(\Delta AMB\)và \(\Delta AMC\)có:
AB = AC (gt)
AM : cạnh chung (gt)
BM = CM (gt)
\(\Rightarrow\Delta AMB=\Delta AMC\left(c.c.c\right)\)
b) \(\Delta ABC\): có M là trung điểm BC => AM là đường trụng trực của BC.
Mà \(\Delta ABC\)cân tại A nên đường trụng trực đồng thời cũng là đường cao.
\(\Rightarrow AM\)vuông góc \(BC\)
c) Xét \(\Delta ABE\)và \(\Delta ACD\)có:
AC = AB (gt)>
Góc A : góc chung (gt)
Do AB = AC(gt) : BD = CE (gt)
=> AB - BD = AC - CE
=> AD = AE.
Vậy \(\Delta ABE=\Delta ADC\)(c.g.c)
d) \(\Delta ABC\)cân có:
BD = CE
2 đoạn thằng cách đều BC nên khi kẻ DE thì \(DE\)//\(BC\).
a) Xét ΔAMB và ΔAMC có
AB=AC(gt)
AM chung
BM=CM(M là trung điểm của BC)
Do đó: ΔAMB=ΔAMC(c-c-c)
b) Ta có: AB=AC(gt)
nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: MB=MC(M là trung điểm của BC)
nên M nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra AM là đường trung trực của BC
hay AM⊥BC(đpcm)
c) Ta có: ΔABM=ΔACM(cmt)
nên \(\widehat{BAM}=\widehat{CAM}\)(hai góc tương ứng)
hay \(\widehat{HAM}=\widehat{KAM}\)
Xét ΔAHM và ΔAKM có
AH=AK(gt)
\(\widehat{HAM}=\widehat{KAM}\)(cmt)
AM chung
Do đó: ΔAHM=ΔAKM(c-g-c)
⇒\(\widehat{HMA}=\widehat{KMA}\)(hai góc tương ứng)
mà tia MA nằm giữa hai tia MH và MK
nên MA là tia phân giác của \(\widehat{HAK}\)(đpcm)
d) Xét ΔABC có AB=AC(gt)
nên ΔABC cân tại A(Định nghĩa tam giác cân)
⇒\(\widehat{B}=\widehat{C}\)
Ta có: AH+HB=AB(H nằm giữa A và B)
AK+KC=AC(K nằm giữa A và C)
mà AB=AC(gt)
và AH=AK(gt)
nên HB=KC
Xét ΔHBM và ΔKCM có
HB=KC(cmt)
\(\widehat{B}=\widehat{C}\)(cmt)
BM=MC(M là trung điểm của BC)
Do đó: ΔHBM=ΔKCM(c-g-c)