Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Xét tam giac ABM và tam giac ACM có
AB=AC(gt)
góc B=góc C(tam giac ABC cân)
AM cạnh chung
suy ra tam giac ABM=tam giac ACM
b. ta có:
tam giác ABC cân mà AM là đường trung tuyến nên AM cũng là đường cao
suy ra AM vuông goc vs BC
a) Ta có:
\(AB=AC\left(g.t\right)\)
\(\Rightarrow\Delta ABC\) cân tại \(A\).
\(\Rightarrow\widehat{B}=\widehat{C}\)
Xét \(\Delta ABM\) và \(\Delta ACM\) có:
\(AB=AC\left(g.t\right)\)
\(\widehat{B}=\widehat{C}\) (c/m trên)
\(MB=MC\left(g.t\right)\)
\(\Rightarrow\Delta ABM=\Delta ACM\left(đpcm\right)\)
b) Ta có: \(\Delta ABM=\Delta ACM\left(c/ma\right)\)
\(\Rightarrow\widehat{AMB}=\widehat{AMC}\) (Hai góc tương ứng)
Mà \(\widehat{AMB}+\widehat{AMC=180^o}\)
\(\Rightarrow\widehat{AMB}=\widehat{AMC}=90^0\)
c) Xét \(\Delta ADM\) và \(\Delta AEM\) có:
\(AD=AE\left(g.t\right)\)
\(\widehat{BAM}=\widehat{CAM}\left(\Delta ABM=\Delta ACM\right)\)
\(AM\) : \(cạnh\) \(chung\)
\(\Rightarrow\Delta ADM=\Delta AEM\left(đpcm\right)\)
a) Xét \(\Delta\)AMB = \(\Delta\)AMC có :
AB=AC (gt)
AM_chung
BM = CM (gt)
=>\(\Delta\)AMB = \(\Delta\)AMC (c.c.c)
yên tâm , bài khó đã có mình
a) tam giác ABC cân tại A do AB=AC
M là trung điểm của BC
=> AM zừa là đường trung tuyến zừa là đường cao hay phân giác
=>\(\widehat{BAM}=\widehat{CAM}\)
xét tam giác AMB zà tam giác AMC có
AB=AC(gt)
AM chung
\(\widehat{BAM}=\widehat{CAM}\left(cmt\right)\)
=> tam giác AMB = tam giác AMC (c.g.c)
b) ta có \(\hept{\begin{cases}DK\perp AM(ABCcân)\\BC\perp AM\end{cases}=>DE//BC}\)mà ABC cân => AD=AE
c) ta có \(\hept{\begin{cases}EF=MC\\MC//EK\end{cases}=>MEKC}\)là hbh
=> MF , EC căt nhau tại trung điểm mỗi đường
mà H là trung điểm EC
=> H nằm trên cạnh MF
=> M,H,F thẳng hàng
1: Xét ΔABM và ΔACM có
AB=AC
BM=CM
AM chung
Do đó: ΔABM=ΔACM
2: Ta có: ΔABC cân tại A
mà AM là trung tuyến
nên AM là đường cao
3: Xét ΔADM và ΔAEM có
AD=AE
góc DAM=góc EAM
AM chung
Do đó; ΔADM=ΔAEM