Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn dựa vào khái niệm : Mối quan hệ giữa góc và cạnh đối diện
a, Xét tam giác EAB và tam giác DAC có:
AB = AC (gt)
AD = AE (gt)
BE = CD (BE = BD + DE = DE + EC = CD)
=> Tam giác EAB = Tam giác DAC (c.c.c)
b,M là trung điểm của BC
=> AM là đường trung tuyến của tam giác ABC cân tại A (AB = AC)
=> AM là đường cao của tam giác ABC
hay AM _I_ BC
mà D, E thuộc BC
=> AM _I_ DE
hay AM là đường cao của tam giác ADE cân tại A (AD = AE)
=> AM là tia phân giác của DAE
C , .....
xét tg EDB và ADC
BDE =ADC(đối đỉnh)
BD=DC(gt)
AD=DE(gt)
=>2tg =Nhau
b) xét BDA và ADC
AD cạnh chung
BD=DC
AB<AC
=>BAD<DAC
=>góc BAD >ADC ( ABD < ACD ; ADB < ADC)
bạn cho k hỏi là chỗ =>BAD<DAC là góc BAD<góc DAC hay là tam giác BAD< tam giác DAC
a). Xét tam giác ABE và tam giác ACD có:
AB=AC (gt)
AE=AD (gt)
BE=CD (BD=DE=EC)
=> Tam giác ABE=tam giác ACD (c.c.c)
=> Góc EAB=góc DAC (2 góc tương ứng)
b). Ta có BM = BD+DM
CM = CE+EM
Mà BM=CM (M là trung điểm BC)
BD=CE (gt)
=> DM=EM
Xét tam giác ADM và tam giác AEM có:
AD=AE (gt)
DE=EM (cmt)
AM là cạnh chung.
=> tam giác ADM=tam giác AEM (c.c.c)
=> Góc DAM = góc EAM (2 góc tương ứng)
=> AM là phân giác của góc DAE
a, Xét tam giác EAB và tam giác DAC có:
AB = AC (gt)
AD = AE (gt)
BE = CD (BE = BD + DE = DE + EC = CD)
=> Tam giác EAB = Tam giác DAC (c.c.c)
b,M là trung điểm của BC
=> AM là đường trung tuyến của tam giác ABC cân tại A (AB = AC)
=> AM là đường cao của tam giác ABC
hay AM _I_ BC
mà D, E thuộc BC
=> AM _I_ DE
hay AM là đường cao của tam giác ADE cân tại A (AD = AE)
=> AM là tia phân giác của DAE
Sửa đề 1 xíu :
Cho tam giác ABC có AB < AC. Gọi D là trung điểm của BC. Trên tia đối của tia DA, đặt DE = DA, nối B và E. Chứng minh rằng:....
a, Xét \(\Delta\)ADC và \(\Delta\)EDB ta có :
DE = DA (gt)
^BDE = ^CDA (đđ)
BD = DC (gt)
=> \(\Delta\)ADC = \(\Delta\)EDB (c.g.c)