K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2020

Hình bạn tự vẽ nha!

Đề phải là \(\Delta ABC\) vuông tại A nhé.

+ Xét \(\Delta ABC\) vuông tại \(A\left(gt\right)\) có:

\(BC^2=AB^2+AC^2\) (định lí Py - ta - go).

=> \(BC^2=3^2+4^2\)

=> \(BC^2=9+16\)

=> \(BC^2=25\)

=> \(BC=5\left(cm\right)\) (vì \(BC>0\)).

+ Vì điểm I cách đều 3 cạnh của \(\Delta ABC\left(gt\right)\)

=> \(BI=CI.\)

Xét 2 \(\Delta\) vuông \(BIM\)\(CIM\) có:

\(\widehat{BMI}=\widehat{CMI}=90^0\left(gt\right)\)

\(BI=CI\left(cmt\right)\)

Cạnh IM chung

=> \(\Delta BIM=\Delta CIM\) (cạnh huyền - cạnh góc vuông).

=> \(BM=CM\) (2 cạnh tương ứng).

=> M là trung điểm của \(BC.\)

=> \(BM=CM=\frac{1}{2}BC\) (tính chất trung điểm).

=> \(BM=CM=\frac{1}{2}.5=\frac{5}{2}=2,5\left(cm\right).\)

=> \(BM=2,5\left(cm\right).\)

Vậy \(BM=2,5\left(cm\right).\)

Chúc bạn học tốt!

29 tháng 11 2019

Bài 4:

29 tháng 11 2019

Bài 6:

b) Theo câu a) ta có \(\Delta ABD=\Delta HBD.\)

=> \(\widehat{ADB}=\widehat{HDB}\) (2 góc tương ứng).

Ta có: \(\widehat{ADB}+\widehat{HDB}=\widehat{ADH}\left(gt\right)\)

=> \(\widehat{ADB}+\widehat{HDB}=120^0\)

\(\widehat{ADB}=\widehat{HDB}\left(cmt\right)\)

=> \(2.\widehat{ADB}=120^0\)

=> \(\widehat{ADB}=120^0:2\)

=> \(\widehat{ADB}=60^0.\)

=> \(\widehat{ADB}=\widehat{HBD}=60^0\)

Xét \(\Delta ABD\) có:

(định lí tổng ba góc trong một tam giác).

=> \(90^0+\widehat{ABD}+60^0=180^0\)

=> \(150^0+\widehat{ABD}=180^0\)

=> \(\widehat{ABD}=180^0-150^0\)

=> \(\widehat{ABD}=30^0\)

Vậy \(\widehat{ABD}=30^0.\)

Chúc bạn học tốt!

a: \(\widehat{HAB}=90^0-60^0=30^0\)

b: Xét ΔAHI và ΔADI có

AH=AD

HI=DI

AI chung

Do đó: ΔAHI=ΔADI

Ta có: ΔAHD cân tại A

mà AI là đường trung tuyến

nên AI là đường cao

c: Xét ΔAHK và ΔADK có

AH=AD

\(\widehat{HAK}=\widehat{DAK}\)

AK chung

Do đó: ΔAHK=ΔADK

Suy ra: \(\widehat{AHK}=\widehat{ADK}=90^0\)

=>DK//AB