Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tứ giác ADFE có các cặp cạnh đối bằng nhau nên nó là hình bình hành. Vậy thì \(\widehat{FDA}=\widehat{FEA}\)
Suy ra \(\widehat{BDF}=\widehat{FDA}+60^o=\widehat{FEA}+60^o=\widehat{FEC}\)
Xét tam giác BDF và tam giác FEC có: BD = EF ; DF = EC; \(\widehat{BDF}=\widehat{FEC}\)
\(\Rightarrow\Delta BDF=\Delta FEC\left(c-g-c\right)\Rightarrow BF=CF\) . Vậy FBC là tam giác cân.
Ta thấy theo tính chất hình bình hành: \(\widehat{DFE}=180^o-\widehat{FEA}\) (1)
Lại có : \(\widehat{DFE}=\widehat{DFB}+\widehat{BFC}+\widehat{EFC}=\widehat{BFC}+\left(\widehat{DFB}+\widehat{EFC}\right)\)
\(=\widehat{BFC}+\left(\widehat{ECF}+\widehat{EFC}\right)\)
\(=\widehat{BFC}+\left(180^o-60^o-\widehat{FEA}\right)=\widehat{BFC}+120^o-\widehat{FEA}\) (2)
Từ (1) và (2) suy ra \(\widehat{BFC}=60^o\)
Suy ra FBC là tam giác đều.
Xét ΔABC và ΔCDA, ta có:
AB = CD (theo cách vẽ)
AC cạnh chung
BC = AD (theo cách vẽ)
Suy ra: ΔABC = ΔCDA (c.c.c) ⇒ ∠(ACB) =∠(CAD) (hai góc tương ứng)
Vậy AD // BC ( vì có cặp góc so le trong bằng nhau)
Tham khảo
ΔΔABC và ΔΔDCB có AB=CD (gt)
BC chung AC=DB (gt)
Vậy ΔΔABC = ΔΔDCB (c.c.c)
Suy ra ˆBDC=ˆA=800BDC^=A^=800 (hai góc tương ứng)
b) Do ΔΔABC = ΔΔDCB (câu a) do đó ˆABC=ˆBCDABC^=BCD^ (hai góc tương ứng của hai tam giác bằng nhau)
Hai góc này ở vị trí so le trong của hai đường thẳng AB và CD cắt đường thẳng BC do đó CD // AB.