K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2016

A B C E F M N

a) +)Xét tam giác EMA vuông tại M

=>góc MEA + góc MAE = 900(Định lí tổng 2 góc nhọn trong 1 tam giác vuông) (1)

+) Ta có: góc MAE +  góc EAM + góc HAB = 1800

=> góc MAE + 900 + góc HAB = 1800

=>góc MAE + góc HAB = 1800(2)

Từ(1) và (2) => góc MEA= góc HAB (3)

+)Xét tam giác MEA và tam giác HAB có:

góc MEA = góc HAB(cm3)

AE=AB(vì tam giác ABE cân tại A)

góc EMA = góc AHB = 900

=>tam giác MEA= tam giác HAB(cạnh huyền-góc nhọn)

=> EM=AH(2 cạnh tương ứng) (4)

Tương tự chứng minh tam giác AHC= tam giác FNA(ch-gn)(6)

=>AN=HC(2 cạnh tương ứng) (5)

Từ (4) và (5) =>EM+HC=AN+AH

=>EM+HC=NH(đpcm)

b) +)Ta co: tam giác AHC=tam giác FNA (cm6)

=>AH=FN(2 cạnh tương ứng)(7)

từ (4) và (7)=>EM=FN(8)

+)Xét tam giác NEM và tam giác MFN có:

EM=FN(cm8)

góc EMN=góc FNM=900

MN là cạnh chung

=>tam giác NEM= tam giác MFN(cgc)

=>EN=FM(2 cạnh tương ứng)

1 tháng 7 2018

a.a. Ta có :

ΔAHB=ΔEMA(ch−gn)ΔAHB=ΔEMA(ch−gn)

AHBˆ=EMAˆ=(900)AHB^=EMA^=(900)

AB=AE(gt)AB=AE(gt)

ΔBAH=ΔAEMΔBAH=ΔAEM ( cùng phụ với ΔMAEΔMAE )

⇒EM=AH(1)⇒EM=AH(1)EM = AH (1)

Tương tự:

ΔAHC=ΔFNA(ch−gn)ΔAHC=ΔFNA(ch−gn)

⇒HC=NA(2)⇒HC=NA(2)

Từ (1)(1) và (2)(2) ⇒EM+HC=AH+NA=NH⇒EM+HC=AH+NA=NH

b) Từ ΔAHC=ΔFNAΔAHC=ΔFNA

⇒AH=NF(3)⇒AH=NF(3)

Từ (1)(1) và (3)(3)EM=MFEM=MF

Mặt khác : EM // NF ( cùng vuông góc với AH )

Ta suy ra : EN // FM

28 tháng 2 2020

a) Xét ∆AHB,∆EMA có :
^AHB = ^EMA = 90o
AB = AE (gt)

Do đó : ∆AHB = ∆EMA (ch-gn)
b) ∆AHB = ∆EMA (ch-gn)

=> EM = AH (1)
Cmtt ta cũng có : ∆AHC = ∆FNA (Ch-Gn)
=> HC = NA (2)
Từ (1)(2) => EM + HC = AH + NA
              => EM + HC = NH (A nằm giữa H,N)



d) Có : EM _|_ AH
            FN _|_ AH
=> EM // FN

11 tháng 1 2021

sai rui en//fm co ma

6 tháng 2 2020

B C A E F H M N

Xét ∆AHB,∆EMA có :

^AHB = ^EMA = 90o

AB = AE (gt)

^BAH = ^AEM (vì cùng phụ với ^MAE)

Do đó : ∆AHB = ∆EMA (Ch - Gn)

=> EM = AH (1)

Cmtt ta cũng có : ∆AHC = ∆FNA (Ch-Gn)

=> HC = NA (2)

Từ (1)(2) => EM + HC = AH + NA

              => EM + HC = NH (A nằm giữa H,N)

b) Có : EM _|_ AH

            FN _|_ AH

=> EM // FN