Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ∆AHB,∆EMA có :
^AHB = ^EMA = 90o
AB = AE (gt)
^BAH = ^AEM (vì cùng phụ với ^MAE)
Do đó : ∆AHB = ∆EMA (Ch - Gn)
=> EM = AH (1)
Cmtt ta cũng có : ∆AHC = ∆FNA (Ch-Gn)
=> HC = NA (2)
Từ (1)(2) => EM + HC = AH + NA
=> EM + HC = NH (A nằm giữa H,N)
b) Có : EM _|_ AH
FN _|_ AH
=> EM // FN
a) Xét ∆AHB,∆EMA có :
^AHB = ^EMA = 90o
AB = AE (gt)
Do đó : ∆AHB = ∆EMA (ch-gn)
b) ∆AHB = ∆EMA (ch-gn)
=> EM = AH (1)
Cmtt ta cũng có : ∆AHC = ∆FNA (Ch-Gn)
=> HC = NA (2)
Từ (1)(2) => EM + HC = AH + NA
=> EM + HC = NH (A nằm giữa H,N)
d) Có : EM _|_ AH
FN _|_ AH
=> EM // FN
a.a. Ta có :
ΔAHB=ΔEMA(ch−gn)ΔAHB=ΔEMA(ch−gn)
AHBˆ=EMAˆ=(900)AHB^=EMA^=(900)
AB=AE(gt)AB=AE(gt)
ΔBAH=ΔAEMΔBAH=ΔAEM ( cùng phụ với ΔMAEΔMAE )
⇒EM=AH(1)⇒EM=AH(1)EM = AH (1)
Tương tự:
ΔAHC=ΔFNA(ch−gn)ΔAHC=ΔFNA(ch−gn)
⇒HC=NA(2)⇒HC=NA(2)
Từ (1)(1) và (2)(2) ⇒EM+HC=AH+NA=NH⇒EM+HC=AH+NA=NH
b) Từ ΔAHC=ΔFNAΔAHC=ΔFNA
⇒AH=NF(3)⇒AH=NF(3)
Từ (1)(1) và (3)(3)EM=MFEM=MF
Mặt khác : EM // NF ( cùng vuông góc với AH )
Ta suy ra : EN // FM
a) +)Xét tam giác EMA vuông tại M
=>góc MEA + góc MAE = 900(Định lí tổng 2 góc nhọn trong 1 tam giác vuông) (1)
+) Ta có: góc MAE + góc EAM + góc HAB = 1800
=> góc MAE + 900 + góc HAB = 1800
=>góc MAE + góc HAB = 1800(2)
Từ(1) và (2) => góc MEA= góc HAB (3)
+)Xét tam giác MEA và tam giác HAB có:
góc MEA = góc HAB(cm3)
AE=AB(vì tam giác ABE cân tại A)
góc EMA = góc AHB = 900
=>tam giác MEA= tam giác HAB(cạnh huyền-góc nhọn)
=> EM=AH(2 cạnh tương ứng) (4)
Tương tự chứng minh tam giác AHC= tam giác FNA(ch-gn)(6)
=>AN=HC(2 cạnh tương ứng) (5)
Từ (4) và (5) =>EM+HC=AN+AH
=>EM+HC=NH(đpcm)
b) +)Ta co: tam giác AHC=tam giác FNA (cm6)
=>AH=FN(2 cạnh tương ứng)(7)
từ (4) và (7)=>EM=FN(8)
+)Xét tam giác NEM và tam giác MFN có:
EM=FN(cm8)
góc EMN=góc FNM=900
MN là cạnh chung
=>tam giác NEM= tam giác MFN(cgc)
=>EN=FM(2 cạnh tương ứng)