Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từng bài 1 thôi bạn!
vẽ trên đt thông cảm!
Do đường tròn ngoại tiếp tam giác ABC có tâm là O
Ta có bổ đề: \(OM=AN=NH=\frac{1}{2}AH\)(tự chứng minh)
Vì \(\widehat{BAH}=\widehat{OAC}\)(cùng phụ với \(\widehat{ABC}\))
Mà AK là phân giác của \(\widehat{BAC}\)
=> AK là phân giác
\(\widehat{HAO}\Rightarrow\widehat{NAK}=\widehat{KAO}\)
Theo bổ đề trên ta có tứ giác ANMO là hình bình hành
=> HK//AO
=> \(\widehat{AKN}=\widehat{KAO}=\widehat{NAK}\left(cmt\right)\)
Hay tam giác NAK cân tại N mà N là trung điểm AH
=> AN=NH=NK
=> \(\Delta AHK\)vuông tại K
1: Xét tứ giác OKDE co
góc OKE=góc ODE=90 độ
=>OKDE là tứ giác nội tiếp
2: ΔOBC cân tại O
mà OK là đường cao
nên K là trung điểm của BC
Xét tứ giác BHCD có
K là trung điểm chung của BC và HD
=>BHCD là hình bình hành
=>BH//CD; BD//CH
=>BH vuông góc AC; CH vuông góc AB
=>H là trực tâm của ΔABC
3: OI=1/2AH(đường trung bình của ΔDAH)
GI=1/2GA(G là trọng tâm của ΔABC)
=>OI/GI=AH/GA
mà góc HAG=góc GIO
nên ΔGAH đồng dạng với ΔGIO
=>góc HAG=góc HIO
=>H,O,G thẳng hàng