K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
15 tháng 4 2020
Cho △ABC nhọn (AB<AC) nội tiếp (O), 2 đường cao BD và CE cắt nhau tại H
a/ Chứng minh : B,C,D,E cùng nằm trên một đường tròn .Xác định tâm M của đường tròn này.
b/ Chứng minh : OM // AH
c/ Chứng minh : AB.AE = AC.AD
d/ Gọi K là điểm đối xứng của H qua M .
10 tháng 12 2021
a: Xét tứ giác BHCD có
M là trung điểm của BC
M là trung điểm của HD
Do đó: BHCD là hình bình hành
1: Xét tứ giác OKDE co
góc OKE=góc ODE=90 độ
=>OKDE là tứ giác nội tiếp
2: ΔOBC cân tại O
mà OK là đường cao
nên K là trung điểm của BC
Xét tứ giác BHCD có
K là trung điểm chung của BC và HD
=>BHCD là hình bình hành
=>BH//CD; BD//CH
=>BH vuông góc AC; CH vuông góc AB
=>H là trực tâm của ΔABC
3: OI=1/2AH(đường trung bình của ΔDAH)
GI=1/2GA(G là trọng tâm của ΔABC)
=>OI/GI=AH/GA
mà góc HAG=góc GIO
nên ΔGAH đồng dạng với ΔGIO
=>góc HAG=góc HIO
=>H,O,G thẳng hàng