Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔABMΔABM và ΔACBΔACB có:
ˆAA^ chung
ˆABM=ˆACBABM^=ACB^
Do đó ΔABMΔABM ∽ ΔACBΔACB (g - g)
b) Vì ΔABMΔABM ∽ ΔACBΔACB (cmt)
và ABAC=AMABABAC=AMAB (Đ/n hai tam giác đồng dạng)
⇒AM=AB2AC=224=1(cm)⇒AM=AB2AC=224=1(cm)
c) Vì ΔABMΔABM ∽ ΔACBΔACB (cmt)
⇒ˆAMB=ˆABC⇒AMB^=ABC^
⇒ˆAMK=ˆABH⇒AMK^=ABH^
Xét ΔAHBΔAHB và ΔAKMΔAKM có:
ˆAHB=ˆAKM=900AHB^=AKM^=900 (Vì AH⊥BC,AK⊥BMAH⊥BC,AK⊥BM
ˆABH=ˆAMKABH^=AMK^ (cmt)
Do đó ΔAHBΔAHB ∽ ΔAKMΔAKM (g - g)
Suy ra AHAK=ABAMAHAK=ABAM
⇒AH.AM=AB.AK⇒AH.AM=AB.AK (đpcm)
a) Xét ΔABM và ΔACB có
\(\widehat{ABM}=\widehat{ACB}\)(gt)
\(\widehat{A}\) chung
Do đó: ΔABM∼ΔACB(g-g)
a/ Xét tg vuông ABC có
BM=CM (gt) => AM=BM=CM=BC/2 (trong tg vuông trung tuyến thuộc cạnh huyền thì bằng nửa cạnh huyền)
=> tg ABM cân tại M => \(\widehat{BAM}=\widehat{ABM}\) (góc ở đáy tg cân)
b/ Xét tg vuông AEF và tg vuông AFM có
\(\widehat{AEF}=\widehat{FAM}\) (cùng phụ với \(\widehat{AFE}\) ) (1)
Mà AM=CM (cmt) => tg MAC cân tại M => \(\widehat{FAM}=\widehat{ACB}\) (góc ở đáy th cân) (2)
Từ (1) và (2) \(\Rightarrow\widehat{ACB}=\widehat{AEF}\)
Xét tg MBE và tg MFC có
\(\widehat{AEF}=\widehat{ACB}\) (cmt)
\(\widehat{BME}=\widehat{CMF}\) (góc đối đỉnh)
=> tg MBE đồng dạng với tg MFC (g.g.g)
c/ Xét tg vuông ABC và tg vuông AFE có
\(\widehat{AEF}=\widehat{ACB}\) (cmt)
=> tg ABC đông dạng với tg AFE
\(\Rightarrow\dfrac{AB}{AF}=\dfrac{AC}{AE}\Rightarrow AB.AE=AC.AF\)
d/