Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔABC vuông tại A và ΔHAC vuông tại H có
\(\widehat{ACH}\) chung
Do đó: ΔABC\(\sim\)ΔHAC(g-g)
b) Áp dụng định lí Pytago vào ΔAHC vuông tại H, ta được:
\(AC^2=AH^2+HC^2\)
\(\Leftrightarrow HC^2=AC^2-AH^2=30^2-24^2=324\)
hay HC=18(cm)
Ta có: ΔABC∼ΔHAC(cmt)
nên \(\dfrac{AB}{HA}=\dfrac{BC}{AC}=\dfrac{AC}{HC}\)(Các cặp cạnh tương ứng tỉ lệ)
\(\Leftrightarrow\dfrac{AB}{24}=\dfrac{BC}{30}=\dfrac{30}{18}=\dfrac{5}{3}\)
Suy ra: \(\left\{{}\begin{matrix}\dfrac{AB}{24}=\dfrac{5}{3}\\\dfrac{BC}{30}=\dfrac{5}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=40\left(cm\right)\\BC=50\left(cm\right)\end{matrix}\right.\)
Vậy: HC=18cm; AB=40cm; BC=50cm
a) Xét ΔABMΔABM và ΔACBΔACB có:
ˆAA^ chung
ˆABM=ˆACBABM^=ACB^
Do đó ΔABMΔABM ∽ ΔACBΔACB (g - g)
b) Vì ΔABMΔABM ∽ ΔACBΔACB (cmt)
và ABAC=AMABABAC=AMAB (Đ/n hai tam giác đồng dạng)
⇒AM=AB2AC=224=1(cm)⇒AM=AB2AC=224=1(cm)
c) Vì ΔABMΔABM ∽ ΔACBΔACB (cmt)
⇒ˆAMB=ˆABC⇒AMB^=ABC^
⇒ˆAMK=ˆABH⇒AMK^=ABH^
Xét ΔAHBΔAHB và ΔAKMΔAKM có:
ˆAHB=ˆAKM=900AHB^=AKM^=900 (Vì AH⊥BC,AK⊥BMAH⊥BC,AK⊥BM
ˆABH=ˆAMKABH^=AMK^ (cmt)
Do đó ΔAHBΔAHB ∽ ΔAKMΔAKM (g - g)
Suy ra AHAK=ABAMAHAK=ABAM
⇒AH.AM=AB.AK⇒AH.AM=AB.AK (đpcm)
đề bài câu a) sai rùi bạn ơi, không có điểm D
cho mk hỏi D ở đâu vậy