Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét tam giác ABC cân tại A, ta có:
góc B = góc C ( tính chất tam giác cân )
Xét tam giác ABC ta có:
góc A + góc B + góc C = 180 độ (định lý tổng ba góc trong tam giác)
mà góc A= 120 độ (gt) , góc B = góc C ( cmt)
-> 120 độ + 2B = 180 độ
-> 2B = 180-120=60 độ
-> B=60 :2=30 độ.
Vì trong tam giác cân đường phân giác cũng đồng thời là đường cao
-> AD vuông góc với BC
vì AD song song với BE
mà góc ADC và góc EBC là 2 góc đồng vị
-> ADC = EBC -> EBC = 90 độ
Ta có : EBC = ABC + ABE
mà EBC = 90 độ , ABC=30 độ
-> ABE = 90-30=60 độ
Ta có : BAE + BAC = 180 độ ( 2 góc kề bù )
mà BAC = 120 đô
-> BAE = 180-120 =60 độ
XÉT tam giác ABE có góc BAE = 60 độ , góc ABE = 60độ
-> tam giác ABE đều
a, Xét tam giác ABC cân tại A, ta có:
góc B = góc C ( tính chất tam giác cân )
Xét tam giác ABC ta có:
góc A + góc B + góc C = 180 độ (định lý tổng ba góc trong tam giác)
mà góc A= 120 độ (gt) , góc B = góc C ( cmt)
-> 120 độ + 2B = 180 độ
-> 2B = 180-120=60 độ
-> B=60 :2=30 độ.
Vì trong tam giác cân đường phân giác cũng đồng thời là đường cao
-> AD vuông góc với BC
vì AD song song với BE
mà góc ADC và góc EBC là 2 góc đồng vị
-> ADC = EBC -> EBC = 90 độ
Ta có : EBC = ABC + ABE
mà EBC = 90 độ , ABC=30 độ
-> ABE = 90-30=60 độ
Ta có : BAE + BAC = 180 độ ( 2 góc kề bù )
mà BAC = 120 đô
-> BAE = 180-120 =60 độ
XÉT tam giác ABE có góc BAE = 60 độ , góc ABE = 60độ
-> tam giác ABE đều
vi be song song voi ad
ma ad vuong goc voi bc ( cho nay minh lam hoi tat)
vay vay be vuong goc voi bc ma goc EBA+ ABD = EBD = 90O
VAY EBA = 600
VAy eba =eab=600(cho nay ban phai tinh goc eab bang tc 2 goc ke bu)
vây tam gia abe deu
b(co 3 goc moi goc bang 90;60;30do ban tu giai dua vao tc canh doi dien voi goc lon hon)
t i c k nha
bạn tự vẽ hình nhé
a) ta có:
EAB + CAB = 1800 ( 2 góc kề bù )
EAB + 1200 = 1800
=> EAB = 1800 - 1200 = 600 (1)
vì: EB // AD
=> EBA = BAD = 120/2 = 600
mà EAB + ABE + BEA = 1800
=> 600 + 600 + BEA = 1800
=> BEA = 1800 - 600 - 600 = 600
=> TAM GIÁC ABE ĐỀU (CÓ 3 GÓC = 600) (đpcm)
a, Có BE // AD (gt)
=> góc EBA = góc BAD (2 góc so le trong)
=> góc EBA = góc BAD = 1/2 góc BAC = 120o/2 = 60o (1)
Tam giác BEA có: góc BEA + góc EBA = góc BAC (t/c góc ngoài)
=> góc BEA = góc BAC - góc EBA = 120o - 60o = 60o (2)
Từ (1)(2) => Tam giác BEA cân
Mà tam giác BEA có : góc EBA = 60o (c/m trên)
=> tam giác BEA đều
b, Tam giác ABC cân (gt) => góc ABc = góc ACB = 90o - góc BAC/2 = 90o - 120o/2 = 30o
Tam giác BEC có: góc BEC + góc ECB +góc CBE = 180o ( đ/lí tổng 3 góc )
=> góc CBE = 180o - góc BEC - góc ECB
=>góc CBE = 180o - 60o - 30o = 90o
Có: Góc ECB < góc BEC < góc CBE (vì 30o < 60o < 90o)
=> EB < BC < EC (quan hệ giữa góc và cạnh đối diện trong tam giác)
a.
EAB + BAC = 1800
EAB + 1200 = 1800
EAB = 1800 - 1200
EAB = 600
AD là tia phân giác của BAC
=> BAD = DAC = BAC/2 = 1200/2 = 600
AD // EB
=> DAB = EBA (2 góc so le trong)
mà DAB = EAB ( = 600 )
=> EBA = EAB
=> Tam giác EAB cân tại E
mà EAB = 600
=> Tam giác ABE đều
b.
BAC = 1200
=> Tam giác ABC tù
=> BC là cạnh lớn nhất
=> BC < AB
mà AB = EB (tam giác ABE đều)
=> BC < EB (1)
Tam giác ABC có:
BC < AB + AC (bất đẳng thức tam giác)
mà AB = AE (tam giác ABE đều)
=> BC < AB + AE
=> BC < EC (2)
Từ (1) và (2), ta có:
EC > BC > EB
https://lazi.vn/edu/exercise/cho-tam-giac-abc-co-goc-a-120-do-duong-phan-giac-ad-d-thuoc-bc-ve-de-vuong-goc-voi-ab-df-vuong-goc
a) ΔAED=ΔAFDΔAED=ΔAFD(ch-gn)nên DE=DF.(hai cạnh tương ứng)
Mặt khác dễ dàng chứng minh được EDFˆ=60o
Vì vậy tam giác DEF là tam giác đều
b)ΔEDK=ΔFDT(hai cạnh góc vuông)
nen DK=DI(hai cạnh tương ứng).Do đó Tam giác DIK cân ở D
c) AD là tia phân giác của góc BAC nên DAB^=DAC^=1/2BAC^=60o
AD//MC(gt),do đó AMCˆ=DABˆ=60o(hai góc nằm trong vị trí đồng vị)
AMC^=CAD^=60o(hai góc nằm trong vị trí sole trong)
Tam giác AMC có hai góc bằng nhau và khoảng 60o nên là tam giác đều
d)Ta có AF=AC-FC=CM-FC=m-n.
a, xét tam giác AMD và tam giác AND có : AD chung
^MAD = ^NAD do AD là pg của ^BAC (gt)
^AMD = ^AND = 90
=> tam giác AMD = tam giác AND (ch-gn)
b, xét tam giác BMD vuông tại M => ^B + ^MDB = 90 (đl)
^B = 30 (gt)
=> ^MDB = 60
tương tự tính đượng ^NDC = 60
có : ^MDB + ^NDC + ^MDN = 180
=> ^MDN = 60
c, AB = AC do tam giác ABC cân tại A (gt)
AM = AN do tam giác AMD = tam giác AND (Câu a)
AB = AM + BM
AC = AN + NC
=> BM = NC
xét tam giác DMB và tam giác DNC có : ^B = ^C
^DMB = ^DNC = 90
=> tam giác DMB = tam giác DNC (cgv-gnk)