K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2016

Tam giác ABC cân tại A có:

\(ABC=90^0-\frac{108^0}{2}=90^0-54^0=36^0\)

BE là tia phân giác của ABC

\(ABE=EBC=\frac{ABC}{2}=\frac{36^0}{2}=18^0\)

AD là tia phân giác của BAC

\(BAD=DAC=\frac{BAC}{2}=\frac{108^0}{2}=54^0\)

Tam giác ABE có:

\(ABE+EAB+AEB=180^0\)

\(18^0+108^0+AEB=180^0\)

\(AEB=180^0-126^0\)

\(AEB=54^0\)

AD là tia phân giác của BAC của tam giác ABC cân tại A

=> AD là trung tuyến của tam giác ABC

Trên tia đối của AC, lấy điểm H sao cho A là trung điểm của HC

mà D là trung điểm của BC (AD là trung tuyến của tam giác ABC)

=> AD là đường trung bình của tam giác CBH

=> AD // HB 

=> AHB = EAD (2 góc so le trong)

mà EAD = AEB (= 540)

=> AHB = AEB

=> Tam giác HBE cân tại B

=> HB = BE

mà AD = BH/2 (AD là đường trung bình của tam giác CBH)

=> AD = BE/2 = 10/2 = 5 (cm)

14 tháng 10 2016

cái phần chứng minh tam giác HBE cân tại B là làm tào lao đó, ko bjk đúng ko nx ==''

20 tháng 2 2020

Kẻ \(CG\perp EF\)\(BN\perp EF\)\(G,N\in EF\))

Xét tam giác BMN vuông tại N và tam giác CMG vuông tại G có;

                                       BM = CM( M là trung điểm của BC)

                                       \(\widehat{BMN}=\widehat{CMG}\)(đối đỉnh)

                       => \(\Delta BMN=\Delta CMG\)(cạnh huyền - góc nhọn)

                        => BN = CG.

       Gọi P là giao của đường phân giác góc BAC và EF.

           Tam giác AEF có AP vừa là đường phân giác, vừa là đường cao => Tam giác AEF cân tại A.

 => \(\widehat{AEF}=\widehat{AFE}\)mà \(\widehat{AEF}=\widehat{BEN}\)(đối đỉnh) => \(\widehat{BEN}=\widehat{AFE}\).

=> \(90^0-\widehat{BEN}=90^0-\widehat{AFE}\)=> \(\widehat{GCF}=\widehat{NBE}\)

          Xét tam giác GCF vuông tại G và tam giác NBE vuông tại N có:

                                                  BN = CG( chứng minh trên)

                                                  \(\widehat{GCF}=\widehat{NBE}\)(chứng minh trên)

                 => \(\Delta GCF=\Delta NBE\)(cạnh góc vuông - góc nhọn kề) => BE = CF(đpcm)

31 tháng 3 2020

pika pi

5 tháng 5 2023

Em xem lại ghi đề đã chính xác chưa nhé!

5 tháng 5 2023

 

à tia phân giác ad của g0c HAC (D thu0c BC)

Bài 1 :Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.a/. Ch/m : ΔAMB = ΔNMCb/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.Ch/m : BI = CN.BÀI 2 :Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE...
Đọc tiếp

Bài 1 :
Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.
a/. Ch/m : ΔAMB = ΔNMC

b/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.

c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.

Ch/m : BI = CN.

BÀI 2 :

Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE = AC

a) Chứng minh BE = DC

b) Gọi O là giao điểm BE và DC. Chứng minh tam giác OBC bằng tam giác ODE.

c) Vẽ trung điểm M của CE. Chứng minh AM là đường trung trực của CE.

Bài 3

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

Bài 4.

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

Bài 4.

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

BÀI 4

Cho tam giác ABC có góc A =350 . Đường thẳng AH vuông góc với BC tại H. Trên đường vuông góc với BC tại B lấy điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH = BD.

a) Chứng minh ΔAHB = ΔDBH.

b) Chứng minh AB//HD.

c) Gọi O là giao điểm của AD và BC. Chứng minh O là trung điểm của BH.

d) Tính góc ACB , biết góc BDH= 350 .

Bài 5 :

Cho tam giác ABC cân tại A và có \widehat{A}=50^0  .

Tính \widehat{B} và \widehat{C}
Lấy D thuộc AB, E thuộc AC sao cho AD = AE. Chứng minh : DE // BC.
Bài 6 :

Cho tam giác ABC cân tại A. Lấy D thuộc AC, E thuộc AB sao cho AD = AE.

Chứng minh : DB = EC.
Gọi O là giao điểm của BD và EC. Chứng minh : tam giác OBC và ODE là tam giác cân.
Chứng minh rằng : DE // BC.
Bài 7

Cho tam giác ABC. Tia phân giác của góc C cắt AB tại D. trên tia đối của tia CA lấy điểm E sao cho CE = CB.

Chứng minh : CD // EB.
Tia phân giác của góc E cắt CD tại F. vẽ CK vuông góc EF tại K. chứng minh : CK Tia phân giác của góc ECF.
Bài 8 :

Cho tam giác ABC vuông tại A có \widehat{B}=60^0 . Vẽ Cx vuông góc BC, trên tia Cx lấy điểm E sao cho CE = CA (CE , CA nằm cùng phía đối BC). trên tia đối của tia BC lấy điểm F sao cho BF = BA. Chứng minh :

Tam giác ACE đều.
A, E, F thẳng hàng.

1

Bài 3: 

a: Xét ΔAIB và ΔCID có

IA=IC

góc AIB=góc CID

IB=ID

Do đó: ΔAIB=ΔCID

b: Xét tứ giác ABCD có

I là trung điểm chung của AC và BD

nên ABCD là hình bình hành

Suy ra: AD//BC va AD=BC

Bài 6: 

a: Xét ΔADB và ΔAEC có

AD=AE
góc A chung

AB=AC

Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có

EB=DC

BC chung

EC=BD

Do đó: ΔEBC=ΔDCB

Suy ra: góc OBC=góc OCB

=>ΔOBC cân tại O

=>OB=OC

=>OE=OD

=>ΔOED cân tại O

c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC

a: Xét ΔABC và ΔADE có

AB/AD=AC/AE

góc A chung

=>ΔABC đồng dạng với ΔADE

b: ΔBAC đồng dạng với ΔDAE

=>góc ABC=góc ADE

=>BC//DE

c: AE+EC=AC

=>EC=8cm

BE là phân giác góc ABC

=>AB/AE=BC/CE

=>BC/8=9/4

=>BC=18cm

d: DE//BC

=>DE/BC=AE/AC=1/3

=>DE/18=1/3

=>DE=6cm

a: AD là phân giác

=>BD/AB=CD/AC

=>BD/6=3/9=1/3

=>BD=2cm

b: \(S_{ABC}=\dfrac{1}{2}\cdot3\cdot\left(2+3\right)=\dfrac{3}{2}\cdot5=\dfrac{15}{2}\left(cm^2\right)\)