Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ \(CG\perp EF\), \(BN\perp EF\)( \(G,N\in EF\))
Xét tam giác BMN vuông tại N và tam giác CMG vuông tại G có;
BM = CM( M là trung điểm của BC)
\(\widehat{BMN}=\widehat{CMG}\)(đối đỉnh)
=> \(\Delta BMN=\Delta CMG\)(cạnh huyền - góc nhọn)
=> BN = CG.
Gọi P là giao của đường phân giác góc BAC và EF.
Tam giác AEF có AP vừa là đường phân giác, vừa là đường cao => Tam giác AEF cân tại A.
=> \(\widehat{AEF}=\widehat{AFE}\)mà \(\widehat{AEF}=\widehat{BEN}\)(đối đỉnh) => \(\widehat{BEN}=\widehat{AFE}\).
=> \(90^0-\widehat{BEN}=90^0-\widehat{AFE}\)=> \(\widehat{GCF}=\widehat{NBE}\)
Xét tam giác GCF vuông tại G và tam giác NBE vuông tại N có:
BN = CG( chứng minh trên)
\(\widehat{GCF}=\widehat{NBE}\)(chứng minh trên)
=> \(\Delta GCF=\Delta NBE\)(cạnh góc vuông - góc nhọn kề) => BE = CF(đpcm)
Bài 3:
a: Xét ΔAIB và ΔCID có
IA=IC
góc AIB=góc CID
IB=ID
Do đó: ΔAIB=ΔCID
b: Xét tứ giác ABCD có
I là trung điểm chung của AC và BD
nên ABCD là hình bình hành
Suy ra: AD//BC va AD=BC
Bài 6:
a: Xét ΔADB và ΔAEC có
AD=AE
góc A chung
AB=AC
Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có
EB=DC
BC chung
EC=BD
Do đó: ΔEBC=ΔDCB
Suy ra: góc OBC=góc OCB
=>ΔOBC cân tại O
=>OB=OC
=>OE=OD
=>ΔOED cân tại O
c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC
a: Xét ΔABC và ΔADE có
AB/AD=AC/AE
góc A chung
=>ΔABC đồng dạng với ΔADE
b: ΔBAC đồng dạng với ΔDAE
=>góc ABC=góc ADE
=>BC//DE
c: AE+EC=AC
=>EC=8cm
BE là phân giác góc ABC
=>AB/AE=BC/CE
=>BC/8=9/4
=>BC=18cm
d: DE//BC
=>DE/BC=AE/AC=1/3
=>DE/18=1/3
=>DE=6cm
a: AD là phân giác
=>BD/AB=CD/AC
=>BD/6=3/9=1/3
=>BD=2cm
b: \(S_{ABC}=\dfrac{1}{2}\cdot3\cdot\left(2+3\right)=\dfrac{3}{2}\cdot5=\dfrac{15}{2}\left(cm^2\right)\)
Tam giác ABC cân tại A có:
\(ABC=90^0-\frac{108^0}{2}=90^0-54^0=36^0\)
BE là tia phân giác của ABC
\(ABE=EBC=\frac{ABC}{2}=\frac{36^0}{2}=18^0\)
AD là tia phân giác của BAC
\(BAD=DAC=\frac{BAC}{2}=\frac{108^0}{2}=54^0\)
Tam giác ABE có:
\(ABE+EAB+AEB=180^0\)
\(18^0+108^0+AEB=180^0\)
\(AEB=180^0-126^0\)
\(AEB=54^0\)
AD là tia phân giác của BAC của tam giác ABC cân tại A
=> AD là trung tuyến của tam giác ABC
Trên tia đối của AC, lấy điểm H sao cho A là trung điểm của HC
mà D là trung điểm của BC (AD là trung tuyến của tam giác ABC)
=> AD là đường trung bình của tam giác CBH
=> AD // HB
=> AHB = EAD (2 góc so le trong)
mà EAD = AEB (= 540)
=> AHB = AEB
=> Tam giác HBE cân tại B
=> HB = BE
mà AD = BH/2 (AD là đường trung bình của tam giác CBH)
=> AD = BE/2 = 10/2 = 5 (cm)
cái phần chứng minh tam giác HBE cân tại B là làm tào lao đó, ko bjk đúng ko nx ==''