Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: AM//BD
=> \(\dfrac{AM}{BD}=\dfrac{AF}{FB}\)
Xét tam giác ACB có CF là đường phân giác góc C
=> \(\dfrac{AC}{BC}=\dfrac{AF}{BF}\) (theo t/chất đường phân giác trong tam giác)
=> \(\dfrac{AM}{BD}=\dfrac{AC}{BC}\)
Gọi K là giao điểm của 3 đg pg trong tg ABC
Do AD ,BE ,CF lần lượt là các đg pg của tg ABC nên ta có:
\(\frac{BD}{DC}=\frac{AB}{AC}\) => AB.DC=AC.BD ; (*)
\(\frac{AE}{EC}=\frac{AB}{AC}\) ; (1)
\(\frac{AF}{BF}=\frac{AC}{BC}\) ;(2)
Mặt khá: MN//BC (gt) => tg ANE\(\infty\)tg CDE (Ta-lét) =>\(\frac{AN}{DC}=\frac{AE}{EC}\) (3)
và tg AMF \(\infty\)tg BDF (Ta-lét) => \(\frac{AM}{BD}=\frac{AF}{BF}\) (4)
Từ (1),(3)=>\(\frac{AN}{DC}=\frac{AB}{BC}=>AN.BC=AB.DC\) (**)
Từ (2),(4)=> \(\frac{AM}{BD}=\frac{AC}{BC}=>AM.BC=AC.DB\) (***)
Từ (*),(**),(***)=> AN.BC=AM.BC=> AM=AN . Mà M,A,N thẳng hàng nên A là t/đ của MN (đpcm)
a) *CF cắt DE, AB lần lượt tại G,H.
-Xét △CBH có: EG//BH (gt).
\(\Rightarrow\dfrac{EG}{BH}=\dfrac{CG}{CH}\left(1\right)\).(định lí Ta-let)
-Xét △CAH có: GD//AH (gt).
\(\Rightarrow\dfrac{GD}{AH}=\dfrac{CG}{CH}\left(2\right)\).(định lí Ta-let)
-Từ (1) và (2) suy ra: \(\dfrac{EG}{BH}=\dfrac{GD}{AH}=\dfrac{EG+GD}{BH+AH}=\dfrac{DE}{AB}\left(3\right)\).
-Xét △EGF có: EG//AH (gt).
\(\Rightarrow\dfrac{EG}{AH}=\dfrac{EF}{AF}\left(4\right)\).(định lí Ta-let)
-Xét △DGF có: DG//BH (gt).
\(\Rightarrow\dfrac{GD}{BH}=\dfrac{GF}{HF}\left(5\right)\) (định lí Ta-let)
-Xét △EDF có: ED//AB (gt).
\(\Rightarrow\)\(\dfrac{GF}{HF}=\dfrac{EF}{AF}\) (định lí Ta-let) (6)
-Từ (4),(5),(6) suy ra:
\(\dfrac{EG}{AH}=\dfrac{GD}{BH}=\dfrac{EG+GD}{AH+BH}=\dfrac{DE}{AB}\left(7\right)\).
-Từ (3) và (7) suy ra: \(\dfrac{EG}{AH}=\dfrac{EG}{BH}\) hay AH=BH nên H là trung điểm AB.