Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tự vẽ hình
a Xét tam giác ABD và tam giác ACE có
góc BEC= góc CDB= 90 độ
AB=AC
AH chung
suy ra tam giác ABD= tam giác ACE(c.g.c)
b) Vì tam giác ABD= tam giác ACE( theo a)
suy ra BD=CEhay BH=CH( 2canhj tương ứng)
Xét tam giác BHC có
BH= CH
suy ra tam giác BHC cân tại H
xét tam giác ABE và tam giác ADE
AE chung
góc BAE = góc DAE(AE la tia phân giác của góc E)
AB = AD ( gt)
=> tam giác ABE = tam giac DAE ( c.g.c)
b) xét tam giác ABI và tam giác ADI
AI chung
góc BAE = góc DAE
tam giác ABI=tam giác ADI
=> BI = DI ( 2 cạnh t/ứ )
=> I là trung điểm của BD
a) Xét ΔBHA vuông tại H và ΔBHD vuông tại H có
BH chung
AH=DH(gt)
Do đó: ΔBHA=ΔBHD(hai cạnh góc vuông)
b) Xét ΔHBA vuông tại H và ΔHKD vuông tại H có
HB=HK(gt)
HA=HD(gt)
Do đó: ΔHBA=ΔHKD(hai cạnh góc vuông)
⇒\(\widehat{HBA}=\widehat{HKD}\)(hai góc tương ứng)
mà \(\widehat{HBA}\) và \(\widehat{HKD}\) là hai góc ở vị trí so le trong
nên AB//DK(Dấu hiệu nhận biết hai đường thắng song song)
c) Ta có: AB//DK(cmt)
AB⊥AC(ΔABC vuông tại A)
Do đó: DK⊥AC
Xét ΔDAK có
KH là đường cao ứng với cạnh AD(KH⊥AD)
AC là đường cao ứng với cạnh DK(AC⊥DK)
KH\(\cap\)AC={C}
Do đó: C là trực tâm của ΔDAK(Tính chất ba đường cao của tam giác)
⇒DC⊥AK(đpcm)
tự kẻ hình nha:3333
a) xét tam giác AHB và tam giác AHC có
AB=AC(gt)
ABC=ACB(gt)
AHB=AHC(=90 độ)
=> tam giác AHB= tam giác AHC(ch-gnh)
=> HB=HC( hai cạnh tương ứng)
b) xét tam giác AHB và tam giác EHC có
AH=EH(gt)
BH=CH(cmt)
AHB=AHC(=90 độ)
=> tam giác AHB= tam giác EHC(cgc)
=> BAH=CEH( hai góc tương ứng)
mà BAH so le trong với CEH=> AB//CE
từ tam giác AHB= tam giác AHC=> BAH=CAH( hai góc tương ứng)
=> CEH=CAH=> tam giác AEC cân C
c) vì AB//HK=> BAH=AHK=> CAH=AHK(CAH=BAH)
=> tam giác AHK cân K=> AK=HK
vì AH vuông góc với BC=> CAH+ACH=90 độ=> ACH=90 độ-CAH
vì AHK+KHC=AHC=> KHC= 90 độ- AHK
=> ACH=KHC (AHK=CAH)
=> tam giác KHC cân K=> KC=HK
=> AK=KC=> K là trung điểm AC
Thank nhe :)))