Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Xét ΔBMG và ΔCMD có
BM=CM(AM là đường trung tuyến ứng với cạnh BC của ΔABC)
\(\widehat{BMG}=\widehat{CMD}\)(hai góc đối đỉnh)
GM=DM(M là trung điểm của GD)
Do đó: ΔBMG=ΔCMD(c-g-c)
⇒\(\widehat{GBM}=\widehat{DCM}\)(hai góc tương ứng)
mà \(\widehat{GBM}\) và \(\widehat{DCM}\) là hai góc ở vị trí so le trong
nên BG//DC(dấu hiệu nhận biết hai đường thẳng song song)
2: Xét ΔABC có
AM là đường trung tuyến ứng với cạnh BC(gt)
BN là đường trung tuyến ứng với cạnh AC(gt)
AM\(\cap\)BN={G}
Do đó: G là trọng tâm của ΔABC(định lí ba đường trung tuyến của tam giác)
⇒\(AG=\frac{2}{3}AM\)(tính chất)(1)
Ta có: AG+GM=AM(G nằm giữa A và M)
hay \(GM=AM-AG=AM-\frac{2}{3}AM=\frac{1}{3}AM\)
mà GD=2GM(M là trung điểm của GD)
nên \(GD=2\cdot\frac{1}{3}AM=\frac{2}{3}AM\)(2)
Từ (1) và (2) suy ra AG=GD
mà A,G,D thẳng hàng(A,G,M,D thẳng hàng)
nên G là trung điểm của AD
Xét ΔADC có
G là trung điểm của AD(cmt)
N là trung điểm của AC(BN là đường trung tuyến ứng với cạnh AC của ΔABC)
Do đó: GN là đường trung bình của ΔADC(định nghĩa đường trung bình của tam giác)
⇒GN//DC và \(GN=\frac{DC}{2}\)(định lí 2 về đường trung bình của tam giác)(3)
Ta có: G là trọng tâm của ΔABC(cmt)
⇒\(GN=\frac{1}{3}BN\)(tính chất)(4)
Từ (3) và (4) suy ra \(\frac{DC}{2}=\frac{1}{3}BN\)
⇔\(\frac{DC}{2}=\frac{BN}{3}\)
hay \(3\cdot CD=2\cdot BN\)(ddpcm)
a: Xét ΔCBD co
CA vừa là đường cao, vừa là trung tuyến
=>ΔCBD cân tại C
b: Xét ΔMDE và ΔMCB có
góc MDE=góc MCB
MD=MC
góc DME=góc CMB
=>ΔMDE=ΔMCB
=>DE=BC
=>BC+BD=ED+BD>EB