Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt a = AB = AC
Áp dụng định lý pytogo trong tam giác vuông ta có
\(a^2+a^2=BC^2\Rightarrow2a^2=12^2=144\Rightarrow a^2=72\Leftrightarrow a=\sqrt{72}=6\sqrt{2}\)
vậy, AB = AC = \(6\sqrt{2}\)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
mà AB=AC(ΔABC cân tại A)
nên \(2\cdot AB^2=12^2\)
\(\Leftrightarrow2\cdot AB^2=144\)
\(\Leftrightarrow AB^2=72\)
hay \(AB=6\sqrt{2}cm\)
Ta có: AB=AC(ΔACB vuông cân tại A)
mà \(AB=6\sqrt{2}cm\)(cmt)
nên \(AC=6\sqrt{2}cm\)
Vậy: \(AB=6\sqrt{2}cm\); \(AC=6\sqrt{2}cm\)
a. Xét tam giác ABD và tam giác ACD
AB = AC ( ABC cân )
góc B = góc C ( ABC cân )
AD : cạnh chung
Vậy tam giác ABD = tam giác ACD ( c.g.c )
b. ta có trong tam giác ABC đường trung tuyến cũng là đường cao
=> AD vuông BC
CD = BC : 2 = 12 : 2 =6cm
c.áp dụng định lý pitago vào tam giác vuông ADC
\(AC^2=AD^2+DC^2\)
\(AD=\sqrt{10^2-6^2}=\sqrt{64}=8cm\)
d.Xét tam giác vuông BDE và tam giác vuông CDF có:
AD = CD ( gt )
góc B = góc C
Vậy tam giác vuông BDE = tam giác vuông CDF ( cạnh huyền . góc nhọn)
=> DE = DF ( 2 cạnh tương ứng )
=> tam giác DEF cân tại D
a) Tam giác ABD và tam giác ACD có:
BD = CD (Vì D là trung điểm của BC)
góc B = góc C
(vì tam giác ABC cân tại A)
AB = AC
Do đó: am giác ABD = tam giác ACD (c.g.c)
Suy ra: Góc ADB = góc ADC (cặp góc t/ứng)
b) Vì góc ADB = góc ADC (cmt) mà góc ADB + góc ADC 180 độ (2 góc kề bù)
nên góc ADB = 180 độ / 2 = 90 độ => AD vuông góc với BC
c) Ta có : BD + CD = BC ( Vì D nằm giữa B và C)
mà BC = 12 cm
=> CD = 12 /2 = 6 cm
Vì AD vuông góc với BC nên tam giác ADC vuông tại D
=> AC2AC2 = AD2AD2 +CD2CD2 (Định lý Pytago)
=> 10^2 = AD ^ 2 + 6 ^2
=> AD^2 = 64
=> AD = 8 (cm) (vì AD > 0 )
d) bạn c/m cho tam giác DEB = tam giác DFC (cạnh huyền - góc nhọn) nhé
=> DE = DF (cặp cạnh tương ứng) => tam giác DEF cân tại D( đn)
Hình tự vẽ
Xét \(\Delta MBH\)và \(\Delta NCH\)
\(\widehat{BMH}=\widehat{CNH}=90^o\)
\(BH=CH\left(cma\right)\)
\(\widehat{NBH}=\widehat{NQH}\)(Tam giác ABC cân tại A
\(\Rightarrow\Delta MBH=\Delta NCH\left(ch-gn\right)\)
\(MH=NH\left(2ctu\right)_{\left(1\right)}\)
Xét \(\Delta BQH\)và \(\Delta CNH\)
\(\widehat{Q}=\widehat{CNH}=90^o\)
\(BH=CH\left(cma\right)\)
\(\widehat{BHQ}=\widehat{NHC}\)(đối đỉnh)
\(\Rightarrow\Delta BQH=\Delta CNH\left(ch-gn\right)\)
\(\Rightarrow QH=NH\left(2ctu\right)_{\left(2\right)}\)
Từ \(\left(1\right),\left(2\right)\Rightarrow MH=QH\)
=> \(\Delta HQM\)cân tại H
1) Có \(\Delta ABC\) vuông
=> S\(\Delta ABC\) = \(\dfrac{AB.AC}{2}\) = \(\dfrac{16.12}{2}\) = 96 (cm2)
2) Có \(\Delta ABC\) vuông , theo định lý Pytago ta có :
AB2 + AC2 = BC2
=> 162 + 122 = BC2
=> 400 = BC2
=> BC = 20 (cm)
Ta có : S\(\Delta ABC\) = S\(\Delta ABH\) + S\(\Delta ACH\)
=> \(\dfrac{BH.AH}{2}+\dfrac{HC.AH}{2}=S\Delta ABC\)
=> \(\dfrac{BH.AH+HC.AH}{2}=S\Delta ABC\)
=> \(\dfrac{AH.\left(BH+HC\right)}{2}=S\Delta ABC\)
=> \(\dfrac{AH.BC}{2}\) = 96
=> AH = 96 . \(\dfrac{2}{BC}\) = 96 . \(\dfrac{2}{20}\) = 9.6 (cm)
3) Có \(\Delta ABH\) vuông , theo định lý Pytago ta có :
BH2 = AB2 - AH2
=>BH2 = 162 - 9.62 = 163.84
=> BH = 12.8 (cm)
=> CH = BC - BH = 20 - 12.8 = 7.2 (cm)
a) Áp dụng định lí Pytago vào ΔBAC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=9^2+12^2=225\)
hay BC=15(cm)
Vậy: BC=15cm
Chu vi của tam giác ABC là:
\(C_{ABC}=AB+AC+BC=9+12+15=36\left(cm\right)\)
Ta có H là trung điêm BC => BH = CH = \(\dfrac{BC}{2}=\dfrac{12}{2}=6cm\)
Xét tam giác ABC cân tại H, H là trung điểm BC => H là đg cao => AH vuông góc với BC
Xét tam giác AHB có: AB2 = AH2 + HB2 (Py-ta-go)
Thay số: 202 = AH2 + 62
=> AH2 = 364 => AH = \(2\sqrt{91}\)
Xét tam giác ABH à tam giác ACH có
AH chung
AB = AC ( tam giác ABC cân tại A)
HB = HC =6cm (H là t/đ của BC)
➜tam giác ABH = tam giác ACH (c.c.c)
➜góc \(H_1\) = góc \(H_2\)
mà góc h1 + góc h2 = 180 độ (kề bù)
➜góc h1 = góc h2 = 90 độ
➜AH vuông góc với BC
Xét tam giác abh vuông tại h (cmt)
➜\(AB^2=AH^2+BH^2\)
➜\(AH^2=AB^2-BC^2\)
\(AH^2\)= \(20^2-6^2\)
\(AH^2\)= 364
AH > 0 ➜AH = \(\sqrt{364}\)
Diện tích hình tam giác: ( cạnh đáy nhân chiều cao ) :2
Cạnh đáy 12cm, chiều cao??
Đề sai!