Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: (bạn tự vẽ hình vì hình cũng dễ)
Ta có: AB = AH + BH = 1 + 4 = 5 (cm)
Vì tam giác ABC cân tại B => BA = BC => BC = 5 (cm)
Xét tam giác BCH vuông tại H có:
\(HB^2+CH^2=BC^2\left(pytago\right)\)
\(4^2+CH^2=5^2\)
\(16+CH^2=25\)
\(\Rightarrow CH^2=25-16=9\)
\(\Rightarrow CH=\sqrt{9}=3\left(cm\right)\)
Tới đây xét tiếp pytago với tam giác ACH là ra AC nhé
Bài 2: Sử dụng pytago với tam giác ABH => AH
Sử dụng pytago với ACH => AC
https://docs.google.com/document/d/1Wuo1vFdubrUg8F8-Ng_f-K8sda_JE_rRM704rtBrI-Q/edit?usp=sharing
Ta có H1+ H2+H3=180
E1+E2=180
mà E1=H1
nên E2=H2+H3
Tong 3 goc trong tam giác: E2+H2+A1=180
(H2+H3)+H2+A1=180
2.H2+H3+A1=180
SUY RA: H2=(180-90-A1):2 *** H3=90 hihi
=45-A1/2
mà A1=90-2A2
thay vào *** ta có H2=45-(90-2.A2)/2=A2
vậy H2=A2 hay EH//AD
a. Xét tam giác ABD và tam giác ACD
AB = AC ( ABC cân )
góc B = góc C ( ABC cân )
AD : cạnh chung
Vậy tam giác ABD = tam giác ACD ( c.g.c )
b. ta có trong tam giác ABC đường trung tuyến cũng là đường cao
=> AD vuông BC
CD = BC : 2 = 12 : 2 =6cm
c.áp dụng định lý pitago vào tam giác vuông ADC
\(AC^2=AD^2+DC^2\)
\(AD=\sqrt{10^2-6^2}=\sqrt{64}=8cm\)
d.Xét tam giác vuông BDE và tam giác vuông CDF có:
AD = CD ( gt )
góc B = góc C
Vậy tam giác vuông BDE = tam giác vuông CDF ( cạnh huyền . góc nhọn)
=> DE = DF ( 2 cạnh tương ứng )
=> tam giác DEF cân tại D
a) Tam giác ABD và tam giác ACD có:
BD = CD (Vì D là trung điểm của BC)
góc B = góc C
(vì tam giác ABC cân tại A)
AB = AC
Do đó: am giác ABD = tam giác ACD (c.g.c)
Suy ra: Góc ADB = góc ADC (cặp góc t/ứng)
b) Vì góc ADB = góc ADC (cmt) mà góc ADB + góc ADC 180 độ (2 góc kề bù)
nên góc ADB = 180 độ / 2 = 90 độ => AD vuông góc với BC
c) Ta có : BD + CD = BC ( Vì D nằm giữa B và C)
mà BC = 12 cm
=> CD = 12 /2 = 6 cm
Vì AD vuông góc với BC nên tam giác ADC vuông tại D
=> AC2AC2 = AD2AD2 +CD2CD2 (Định lý Pytago)
=> 10^2 = AD ^ 2 + 6 ^2
=> AD^2 = 64
=> AD = 8 (cm) (vì AD > 0 )
d) bạn c/m cho tam giác DEB = tam giác DFC (cạnh huyền - góc nhọn) nhé
=> DE = DF (cặp cạnh tương ứng) => tam giác DEF cân tại D( đn)
đặt a = AB = AC
Áp dụng định lý pytogo trong tam giác vuông ta có
\(a^2+a^2=BC^2\Rightarrow2a^2=12^2=144\Rightarrow a^2=72\Leftrightarrow a=\sqrt{72}=6\sqrt{2}\)
vậy, AB = AC = \(6\sqrt{2}\)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
mà AB=AC(ΔABC cân tại A)
nên \(2\cdot AB^2=12^2\)
\(\Leftrightarrow2\cdot AB^2=144\)
\(\Leftrightarrow AB^2=72\)
hay \(AB=6\sqrt{2}cm\)
Ta có: AB=AC(ΔACB vuông cân tại A)
mà \(AB=6\sqrt{2}cm\)(cmt)
nên \(AC=6\sqrt{2}cm\)
Vậy: \(AB=6\sqrt{2}cm\); \(AC=6\sqrt{2}cm\)