K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2019

Đề kiểm tra 45 phút Đại số 10 Chương 4 có đáp án (Đề 4)

Áp dụng bất đẳng thức Cô – si đối với hai số Đề kiểm tra 45 phút Đại số 10 Chương 4 có đáp án (Đề 4) ta được:

Đề kiểm tra 45 phút Đại số 10 Chương 4 có đáp án (Đề 4)

Vì 0 < x < 1 ⇒ 1 - x > 0

Áp dụng bất đẳng thức Cô – si đối với hai số Đề kiểm tra 45 phút Đại số 10 Chương 4 có đáp án (Đề 4) ta được:

Đề kiểm tra 45 phút Đại số 10 Chương 4 có đáp án (Đề 4)

Dấu “ = ” xảy khi và chỉ khi

Đề kiểm tra 45 phút Đại số 10 Chương 4 có đáp án (Đề 4)

Vậy giá trị nhỏ nhất của hàm số bằng 4 tại x = 1/2

NV
12 tháng 3 2021

\(B=\dfrac{1}{x^3+y^3}+\dfrac{1}{xy\left(x+y\right)}=\dfrac{1}{x^3+y^3}+\dfrac{3}{3xy\left(x+y\right)}\)

\(B\ge\dfrac{\left(1+\sqrt{3}\right)^2}{x^3+y^3+3xy\left(x+y\right)}=\dfrac{4+2\sqrt{3}}{\left(x+y\right)^3}=4+2\sqrt{3}\)

\(B_{min}=4+2\sqrt{3}\) khi \(\left(x;y\right)=\left(\dfrac{3+\sqrt{3}-\sqrt[4]{12}}{6+2\sqrt{3}};\dfrac{3+\sqrt{3}+\sqrt[4]{12}}{6+2\sqrt{3}}\right)\) và hoán vị

 

AH
Akai Haruma
Giáo viên
12 tháng 3 2021

Lời giải:

Áp dụng BĐT Cauchy-Shwarz:

$B=\frac{1}{x^3+y^3}+\frac{1}{xy}=\frac{1}{(x+y)^3-3xy(x+y)}+\frac{1}{xy}$

$=\frac{1}{1-3xy}+\frac{1}{xy}=\frac{1}{1-3xy}+\frac{3}{3xy}$

$\geq \frac{(1+\sqrt{3})^2}{1-3xy+3xy}=(1+\sqrt{3})^2$

Vậy $B_{\min}=(1+\sqrt{3})^2$

Dấu "=" xảy ra khi $xy=\frac{1}{2}-\frac{1}{2\sqrt{3}}$

1 tháng 4 2022

\(x+2y=6\)

\(\Leftrightarrow\dfrac{6}{2}=\dfrac{x}{2}+y\)

\(P+\dfrac{6}{2}=\dfrac{8}{x}+\dfrac{1}{y}+\dfrac{x}{2}+y\)

\(\Leftrightarrow P+\dfrac{6}{2}=\left(\dfrac{8}{x}+\dfrac{1}{y}\right)+\left(\dfrac{1}{y}+y\right)\)

vì x;y là số thực dương ,áp dụng BĐT Côsi ta có :

\(\dfrac{8}{x}+\dfrac{x}{2}=2\sqrt{\dfrac{8}{x}+\dfrac{x}{2}}=2\sqrt{4}=2.2=4\)

\(\dfrac{1}{y}+y=2\sqrt{\dfrac{1}{y}+y}=2\sqrt{1}=2.1=2\)

nên \(P+\dfrac{6}{2}\ge6\)

\(\Leftrightarrow P\ge6-\dfrac{6}{2}\)

\(\Leftrightarrow P\ge3\)

vậy \(P_{min}=3\)

13 tháng 4 2022

We have : \(A=x+y+\dfrac{1}{2x}+\dfrac{2}{y}=\dfrac{x+y}{2}+\left(\dfrac{y}{2}+\dfrac{2}{y}\right)+\left(\dfrac{1}{2x}+\dfrac{x}{2}\right)\)

\(Applying\) C-S we have : \(\dfrac{y}{2}+\dfrac{2}{y}\ge2;\dfrac{1}{2x}+\dfrac{x}{2}\ge1\)

x + y \(\ge3\)  \(\Rightarrow\dfrac{x+y}{2}\ge\dfrac{3}{2}\)

So : \(A\ge\dfrac{3}{2}+2+1=\dfrac{9}{2}\)

" = " \(\Leftrightarrow x=1;y=2\)

18 tháng 8 2020

Sửa: \(P=2x^4+x^3\left(2y-1\right)+y^3\left(2x-1\right)+2y^4\); x+y=1

Ta có \(P=2x^4+x^3\left(2y-1\right)+y^3\left(2x-1\right)+2y^4=2x^4+2x^3y-x^3+2xy^3-y^3+2y^4\)

\(=x^3\left(2x+2y\right)+y^3\left(2x+2y\right)-\left(x^3+y^3\right)=\left(2x+2y\right)\left(x^3+y^3\right)-\left(x^3+y^3\right)\)

\(=\left(2x+2y-1\right)\left(x^3+y^3\right)=x^3+y^3\)

Do \(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=x^2-xy+y^2=\frac{1}{2}\left(x^2+y^2\right)\left(\frac{x}{\sqrt{2}}-\frac{y}{\sqrt{2}}\right)^2\)

\(\Rightarrow P\ge\frac{1}{2}\left(x^2+y^2\right)\)

Mà \(x+y=1\Rightarrow x^2+y^2+2xy=1\Rightarrow2\left(x^2+y^2\right)-\left(x-y\right)^2=1\)

\(\Rightarrow2\left(x^2+y^2\right)\ge1\Rightarrow\left(x^2+y^2\right)\ge\frac{1}{2}\Rightarrow P\ge\frac{1}{4}\)

Dấu "=" xảy ra khi \(x=y=\frac{1}{2}\)

2 tháng 5 2016

theo mik thì x,y là số dương hoặc số nguyên dương

 

2 tháng 5 2016

x,y là số thực bạn ạ, đề thi trường mình 4 năm trước, thầy giao về nhà mà mình chưa làm được :''>

 

18 tháng 8 2020

Áp dụng Bất Đẳng Thức Cosi ta có \(\hept{\begin{cases}\frac{x^3}{1+y}+\frac{1+y}{4}+\frac{1}{2}\ge3\sqrt[3]{\frac{x^3}{1+y}\cdot\frac{1+y}{4}\cdot\frac{1}{2}}=\frac{3x}{2}\\\frac{y^3}{1+z}+\frac{1+z}{4}+\frac{1}{2}\ge3\sqrt[3]{\frac{y^3}{1+z}\cdot\frac{1+z}{4}\cdot\frac{1}{2}}=\frac{3y}{2}\\\frac{z^3}{1+x}+\frac{1+x}{4}+\frac{1}{2}\ge3\sqrt[3]{\frac{z^3}{1+x}\cdot\frac{1+x}{4}\cdot\frac{1}{2}}=\frac{3z}{2}\end{cases}}\)

Cộng vế theo vế ta được \(P+\frac{3+x+y+z}{4}+\frac{3}{2}\ge\frac{3}{2}\left(x+y+z\right)\)

\(\Leftrightarrow P\ge\frac{5}{4}\left(x+y+z\right)-\frac{9}{4}\)

Mà ta có \(\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\ge9\Rightarrow x+y+z\ge3\)

Do đó \(P\ge\frac{5}{4}\cdot3-\frac{9}{4}=\frac{3}{2}\). Dấu "=" xảy ra khi x=y=z=1

Vậy minP=\(\frac{3}{2}\)khi x=y=z=1

NV
27 tháng 1 2021

\(P=\sqrt{4x^2+36y^2+24xy+3x^2+3y^2-6xy}+\sqrt{36x^2+4y^2+24xy+3x^2+3y^2-6xy}\)

\(P=\sqrt{\left(2x+6y\right)^2+3\left(x-y\right)^2}+\sqrt{\left(6x+2y\right)^2+3\left(x-y\right)^2}\)

\(P\ge\sqrt{\left(2x+6y\right)^2}+\sqrt{\left(6x+2y\right)^2}=8\left(x+y\right)\ge16\sqrt{xy}=16\)

\(P_{min}=16\) khi \(x=y=1\)

6 tháng 5 2020

\(3xy=x+y+1\ge3\sqrt[3]{xy}\Rightarrow xy\ge1\)

\(4xy=xy+x+y+1=x\left(y+1\right)+\left(y+1\right)=\left(x+1\right)\left(y+1\right)\)

\(P=\frac{1}{x\left(y+1\right)}+\frac{1}{y\left(x+1\right)}=\frac{2xy+x+y}{4\left(xy\right)^2}=\frac{5xy-1}{4\left(xy\right)^2}\)

Xét hiệu: \(P-1=\frac{5xy-1}{4x^2y^2}-1=\frac{\left(4xy-1\right)\left(1-xy\right)}{4x^2y^2}\le0\) với mọi \(xy\ge1\)

Vậy \(P\le1\)hay max P = 1.

Dẫu "=" xảy ra <=> x = y = 1.

6 tháng 5 2020

Áp dụng BĐT Cauchy ta có: \(3xy\ge2\sqrt{xy}+1\Leftrightarrow xy\ge1\)

Áp dụng BĐT Cauchy ta có:

\(P=\frac{1}{x\left(y+1\right)}+\frac{1}{y\left(x+1\right)}=\frac{5xy-1}{xy\left(x+1\right)\left(y+1\right)}=\frac{5xy-1}{4\left(xy\right)^2}\), đặt t=\(\frac{1}{xy}\)

\(f\left(t\right)=\frac{5}{4}t-\frac{1}{4}t^2\)đồng biến trên (0;1] nên f(t) đạt GTLN tại t=1

Vậy GTKN của P=1 đạt được khi x=y=1

NV
4 tháng 4 2021

1.

\(f\left(x\right)=\dfrac{4}{x}+\dfrac{x-1+1}{1-x}=\dfrac{2^2}{x}+\dfrac{1}{1-x}-1\ge\dfrac{\left(2+1\right)^2}{x+1-x}-1=8\)

\(f\left(x\right)_{min}=8\) khi \(x=\dfrac{2}{3}\)

2.

\(f\left(x\right)=\dfrac{1}{x}+\dfrac{1}{1-x}\ge\dfrac{4}{x+1-x}=4\)

\(f\left(x\right)_{min}=4\) khi \(x=\dfrac{1}{2}\)

11 tháng 1 2022

f(x)=4x+x−1+11−x=22x+11−x−1≥(2+1)2x+1−x−1=8f(x)=4x+x−1+11−x=22x+11−x−1≥(2+1)2x+1−x−1=8

f(x)min=8f(x)min=8 khi x=23x=23

2.

f(x)=1x+11−x≥4x+1−x=4f(x)=1x+11−x≥4x+1−x=4

f(x)min=4f(x)min=4 khi x=12