Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x+2y=6\)
\(\Leftrightarrow\dfrac{6}{2}=\dfrac{x}{2}+y\)
\(P+\dfrac{6}{2}=\dfrac{8}{x}+\dfrac{1}{y}+\dfrac{x}{2}+y\)
\(\Leftrightarrow P+\dfrac{6}{2}=\left(\dfrac{8}{x}+\dfrac{1}{y}\right)+\left(\dfrac{1}{y}+y\right)\)
vì x;y là số thực dương ,áp dụng BĐT Côsi ta có :
\(\dfrac{8}{x}+\dfrac{x}{2}=2\sqrt{\dfrac{8}{x}+\dfrac{x}{2}}=2\sqrt{4}=2.2=4\)
\(\dfrac{1}{y}+y=2\sqrt{\dfrac{1}{y}+y}=2\sqrt{1}=2.1=2\)
nên \(P+\dfrac{6}{2}\ge6\)
\(\Leftrightarrow P\ge6-\dfrac{6}{2}\)
\(\Leftrightarrow P\ge3\)
vậy \(P_{min}=3\)
We have : \(A=x+y+\dfrac{1}{2x}+\dfrac{2}{y}=\dfrac{x+y}{2}+\left(\dfrac{y}{2}+\dfrac{2}{y}\right)+\left(\dfrac{1}{2x}+\dfrac{x}{2}\right)\)
\(Applying\) C-S we have : \(\dfrac{y}{2}+\dfrac{2}{y}\ge2;\dfrac{1}{2x}+\dfrac{x}{2}\ge1\)
x + y \(\ge3\) \(\Rightarrow\dfrac{x+y}{2}\ge\dfrac{3}{2}\)
So : \(A\ge\dfrac{3}{2}+2+1=\dfrac{9}{2}\)
" = " \(\Leftrightarrow x=1;y=2\)
\(B=\dfrac{1}{x^3+y^3}+\dfrac{1}{xy\left(x+y\right)}=\dfrac{1}{x^3+y^3}+\dfrac{3}{3xy\left(x+y\right)}\)
\(B\ge\dfrac{\left(1+\sqrt{3}\right)^2}{x^3+y^3+3xy\left(x+y\right)}=\dfrac{4+2\sqrt{3}}{\left(x+y\right)^3}=4+2\sqrt{3}\)
\(B_{min}=4+2\sqrt{3}\) khi \(\left(x;y\right)=\left(\dfrac{3+\sqrt{3}-\sqrt[4]{12}}{6+2\sqrt{3}};\dfrac{3+\sqrt{3}+\sqrt[4]{12}}{6+2\sqrt{3}}\right)\) và hoán vị
Lời giải:
Áp dụng BĐT Cauchy-Shwarz:
$B=\frac{1}{x^3+y^3}+\frac{1}{xy}=\frac{1}{(x+y)^3-3xy(x+y)}+\frac{1}{xy}$
$=\frac{1}{1-3xy}+\frac{1}{xy}=\frac{1}{1-3xy}+\frac{3}{3xy}$
$\geq \frac{(1+\sqrt{3})^2}{1-3xy+3xy}=(1+\sqrt{3})^2$
Vậy $B_{\min}=(1+\sqrt{3})^2$
Dấu "=" xảy ra khi $xy=\frac{1}{2}-\frac{1}{2\sqrt{3}}$
Ta có bất đẳng thức: với \(x,y>0\)
\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)
Dấu \(=\)khi \(x=y\).
Áp dụng bất đẳng thức trên ta được:
\(\frac{1}{2x+3y+3z}\le\frac{1}{4}\left(\frac{1}{2x+y+z}+\frac{1}{2y+2z}\right)\le\frac{1}{4}\left[\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{x+z}\right)+\frac{1}{2}\left(\frac{1}{y+z}\right)\right]\)
\(=\frac{1}{16}\left(\frac{1}{x+y}+\frac{1}{x+z}\right)+\frac{1}{8}\left(\frac{1}{y+z}\right)\)
Tương tự với \(\frac{1}{3x+2y+3z},\frac{1}{3x+3y+2z}\)sau đó cộng lại vế với vế ta được:
\(P\le\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)=3\)
Dấu \(=\)xảy ra khi \(x=y=z=\frac{1}{8}\)
Áp dụng BĐT BSC:
\(F=\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\)
\(\le\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)+\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{y}+\dfrac{1}{z}\right)+\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}+\dfrac{1}{z}\right)\)
\(=\dfrac{1}{16}\left(\dfrac{4}{x}+\dfrac{4}{y}+\dfrac{4}{z}\right)=\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=\dfrac{1}{4}.4=1\)
\(maxF=1\Leftrightarrow x=y=z=\dfrac{3}{4}\)
Vì
Áp dụng bất đẳng thức Cô – si đối với hai số ta được:
Vì 0 < x < 1 ⇒ 1 - x > 0
Áp dụng bất đẳng thức Cô – si đối với hai số ta được:
Dấu “ = ” xảy khi và chỉ khi
Vậy giá trị nhỏ nhất của hàm số bằng 4 tại x = 1/2
Sửa: \(P=2x^4+x^3\left(2y-1\right)+y^3\left(2x-1\right)+2y^4\); x+y=1
Ta có \(P=2x^4+x^3\left(2y-1\right)+y^3\left(2x-1\right)+2y^4=2x^4+2x^3y-x^3+2xy^3-y^3+2y^4\)
\(=x^3\left(2x+2y\right)+y^3\left(2x+2y\right)-\left(x^3+y^3\right)=\left(2x+2y\right)\left(x^3+y^3\right)-\left(x^3+y^3\right)\)
\(=\left(2x+2y-1\right)\left(x^3+y^3\right)=x^3+y^3\)
Do \(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=x^2-xy+y^2=\frac{1}{2}\left(x^2+y^2\right)\left(\frac{x}{\sqrt{2}}-\frac{y}{\sqrt{2}}\right)^2\)
\(\Rightarrow P\ge\frac{1}{2}\left(x^2+y^2\right)\)
Mà \(x+y=1\Rightarrow x^2+y^2+2xy=1\Rightarrow2\left(x^2+y^2\right)-\left(x-y\right)^2=1\)
\(\Rightarrow2\left(x^2+y^2\right)\ge1\Rightarrow\left(x^2+y^2\right)\ge\frac{1}{2}\Rightarrow P\ge\frac{1}{4}\)
Dấu "=" xảy ra khi \(x=y=\frac{1}{2}\)