Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
\(a)\)Ta có :
\(A=\frac{2.6^9-4^5.9^4}{20.6^8+2^{10}.3^8}\)
\(A=\frac{2.\left(2.3\right)^9-\left(2^2\right)^5.\left(3^2\right)^4}{\left(2^2.5\right).\left(2.3\right)^8+2^{10}.3^8}\)
\(A=\frac{2.2^9.3^9-2^{10}.3^8}{2^2.5.2^8.3^8+2^{10}.3^8}\)
\(A=\frac{2^{10}.3^9-2^{10}.3^8}{2^{10}.3^8.5+2^{10}.3^8}\)
\(A=\frac{2^{10}.3^8\left(3-1\right)}{2^{10}.3^8\left(5+1\right)}\)
\(A=\frac{2}{6}\)
\(A=\frac{1}{3}\)
Vậy \(A=\frac{1}{3}\)
Năm mới zui zẻ nhé ^^
Đặt \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{e}=K\)
=> a = bK, b = cK, c = dK, d = eK
Do đó: \(\dfrac{2a^4+3b^4+4c^4+5d^4}{2b^4+3c^4+4d^4+5e^4}\)
= \(\dfrac{2b^4K^4+3c^4K^4+4d^4K^4+5e^4K^4}{2b^4+3c^4+4d^4+5d^4}\)
= \(\dfrac{K^4\left(2b^4+3c^4+4d^4+5d^4\right)}{2b^4+3c^4+4d^4+5d^4}\)
= K4 (1)
\(\dfrac{a}{e}=\dfrac{bK}{e}=\dfrac{cK^2}{e}=\dfrac{dK^3}{e}=\dfrac{eK^4}{e}=K^4\left(2\right)\)
(1)(2) => \(\dfrac{2a^4+3b^4+4c^4+5d^4}{2b^4+3c^4+4d^4+5e^4}\) = \(\dfrac{a}{e}\)
Đặt: \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{e}=t\) ta có:
\(\dfrac{2a^4}{2b^4}=\dfrac{3b^4}{3c^4}=\dfrac{4c^4}{4d^4}=\dfrac{5d^4}{5e^4}=t^4\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(t^4=\dfrac{2a^4+3b^4+4c^4+5d^4}{2b^4+3c^4+4d^4+5e^4}\)
Mặt khác: \(\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}.\dfrac{d}{e}=\dfrac{a}{e}=t.t.t.t=t^4\)
Ta có đpcm
Theo đề, ta có: 6a=2b=-4c=5d
\(\Leftrightarrow\dfrac{a}{10}=\dfrac{b}{30}=\dfrac{c}{-15}=\dfrac{d}{12}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{10}=\dfrac{b}{30}=\dfrac{c}{-15}=\dfrac{d}{12}=\dfrac{3a-2b+4c-d}{3\cdot10-2\cdot30+4\cdot\left(-15\right)-12}=\dfrac{2}{-102}=-\dfrac{1}{51}\)
Do đó: a=-10/51; b=-10/17; c=5/17; d=4/17
\(a+b-2c-3d=\dfrac{-10}{51}-\dfrac{10}{17}-2\cdot\dfrac{5}{17}-3\cdot\dfrac{4}{17}=-\dfrac{106}{51}\)
ta có: \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{e}\Rightarrow\dfrac{a^4}{b^4}=\dfrac{b^4}{c^4}=\dfrac{c^4}{d^4}=\dfrac{d^4}{e^4}\)
\(\dfrac{2a^4+3b^4+4c^4+5d^4}{2b^4+3c^4+4d^4+5e^4}=\dfrac{2a^4}{2b^4}=\dfrac{3b^4}{3c^4}=\dfrac{4c^4}{4d^4}=\dfrac{4d^4}{4e^4}\\ =\dfrac{a^4}{b^4}=\dfrac{b^4}{c^4}=\dfrac{c^4}{d^4}=\dfrac{d^4}{e^4}\\ \dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{e}\)
a/
\(\overline{dcba}⋮4\Rightarrow\overline{ba}⋮4\)
\(\overline{ba}=10b+a=8b+\left(2b+a\right)⋮4\)
Mà \(8b⋮4\Rightarrow2b+a⋮4\)
c/
\(\overline{dcba}=1000d+100c+10b+a=\)
\(=986d+14d+87c+13c+10b+a=\)
\(=\left(986d+87c\right)+\left(14d+13c+10b+a\right)⋮29\)
Mà \(986d+87c⋮29\Rightarrow14d+13c+10b+a⋮29\)
\(\Rightarrow28d+26c+20b+2a⋮29\)
\(\Rightarrow29\left(d+c+b+a\right)-\left(28d+26c+20b+2a\right)=\)
\(=d+3c+9b+27a⋮29\)