K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2017

a/2b+c=b/2c+a=c/2a+b

=>2b+c/a=2c+a/b=2a+b/c ( vì a,b,c > 0 )

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

2b+c/a=2c+a/b=2a+b/c = 2b+c+2c+a+2a+b/a+b+c = 3

=> 2b+c/a+2c+a/b+2a+b/c = 3+3+3 = 9

k mk nha

27 tháng 11 2017

ok bạn đúng đó :))

???❤😘😍😍
5 tháng 1 2020

Ta có : \(\frac{2y+2z-x}{a}=\frac{2z+2x-y}{b}=\frac{2x+2y-z}{c}\)(sửa lại đề) (1) 

=> \(\frac{2y+2z-x}{a}=\frac{4b+4x-2y}{2b}=\frac{4x+4y-2z}{2c}\)

\(\frac{4z+4x-2y+4x+4y-2z-2y-2z+x}{2b+2c-a}=\frac{9x}{2b+2c-a}\)(dãy tỉ số bằng nhau) (2)

Từ (1) => \(\frac{4y+4z-2x}{2a}=\frac{2z+2x-y}{b}=\frac{4x+4y-2z}{2c}\)

\(\frac{4x+4y-2z+4y+4z-2x-2z-2x+y}{2c+2a-b}=\frac{9y}{2c+2a-b}\)(dãy tỉ số bằng nhau) (3)

Từ (1) có :  \(\frac{4y+4z-2x}{2a}=\frac{4z+4x-2y}{2b}=\frac{2x+2y-z}{c}=\frac{4y+4z-2x+4z+4x-2y-2x-2y+z}{2a+2b-c}\)\(=\frac{9z}{2a+2b-c}\)(dãy tỉ số bằng nhau) (4)

Từ (2) ; (3) ; (4) => điều phải chứng minh

11 tháng 12 2019

Còn câu hỏi đâu bạn? Nguyễn Ngân Hà

25 tháng 3 2018

\(a;b;c>0\) nên \(a+b+c>0\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\dfrac{2b+c-a}{a}=\dfrac{2c+a-b}{b}=\dfrac{2a+b-c}{c}=\dfrac{2b+c-a+2c+a-b+2a+b-c}{a+b+c}=2\)

\(\Rightarrow\left\{{}\begin{matrix}2b+c=3a\Leftrightarrow3a-2b=c\\2c+a=3b\Leftrightarrow3b-2c=a\\2a+b=3c\Leftrightarrow3c-2a=b\end{matrix}\right.\)

Khi đó: \(\dfrac{\left(3a-2b\right)\left(3b-2c\right)\left(3c-2a\right)}{abc}=\dfrac{abc}{abc}=1\)

24 tháng 12 2021

\(\dfrac{2b+c-a}{a}=\dfrac{2c-b+a}{b}=\dfrac{2a+b-c}{c}=\dfrac{2\left(a+b+c\right)}{a+b+c}=2\\ \Leftrightarrow\left\{{}\begin{matrix}2b+c-a=2a\\2c-b+a=2b\\2a+b-c=2c\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a-2b=c\\3b-2c=a\\3c-2a=b\end{matrix}\right.\text{ và }\left\{{}\begin{matrix}3a-c=2b\\3b-a=2c\\3c-b=2a\end{matrix}\right.\\ \Leftrightarrow P=\dfrac{a\cdot b\cdot c}{2a\cdot2b\cdot3c}=\dfrac{1}{8}\)