K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 9 2016

2 mu 3= 8

14 tháng 9 2016

x+y=xy <=> x+y-xy=0 <=> x(1-y) -1+y +1=0 <=> (x-1)(1-y)= -1

Nếu x,y không nguyên thì có vô số nghiệm cứ mỗi x thay vào sẽ có 1 y
Nếu x,y nguyên thì giải như sau
Từ (x-1)(1-y)= -1
Suy ra x-1, 1-y là các ước nguyên của -1
Suy ra có các trường hợp sau
x-1=1 <=> x=2
1-y=-1<=> y=2


x-1= -1 <=> x=0
1-y=1 <=> y=0

Vậy có 2 nghiệm là (x,y) = (2,2) và (0,0)

\(10A=\dfrac{10^{2021}+1+9}{10^{2021}+1}=1+\dfrac{9}{10^{2021}+1}\)

\(10B=\dfrac{10^{2022}+1+9}{10^{2022}+1}=1+\dfrac{9}{10^{2022}+1}\)

mà \(10^{2021}+1< 10^{2022}+1\)

nên A>B

3 tháng 5 2023

B = \(\dfrac{1}{2002}\) + \(\dfrac{2}{2021}\) + \(\dfrac{3}{2020}\)+...+ \(\dfrac{2021}{2}\) + \(\dfrac{2022}{1}\)

B = \(\dfrac{1}{2002}\) + \(\dfrac{2}{2021}\) + \(\dfrac{3}{2020}\)+...+ \(\dfrac{2021}{2}\) + 2022

B = 1 + ( 1 + \(\dfrac{1}{2022}\)) + ( 1 + \(\dfrac{2}{2021}\)) + \(\left(1+\dfrac{3}{2020}\right)\)+ ... + \(\left(1+\dfrac{2021}{2}\right)\) 

B = \(\dfrac{2023}{2023}\) + \(\dfrac{2023}{2022}\) + \(\dfrac{2023}{2021}\) + \(\dfrac{2023}{2020}\) + ...+ \(\dfrac{2023}{2}\) 

B = 2023 \(\times\) ( \(\dfrac{1}{2023}\) + \(\dfrac{1}{2022}\) + \(\dfrac{1}{2021}\) + \(\dfrac{1}{2020}\)+ ... + \(\dfrac{1}{2}\))

Vậy B > C