Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) điều kiện của m: m khác 5/2
thế x=2 vào pt1 ta đc:
(2m-5)*4 - 4(m-1)+3=0 <=> 8m-20-4m+4+3=0<=> 4m = 13 <=> m=13/4 (nhận)
lập △'=[-(m-1)]2-*(2m-5)*3 = (m-4)2
vì (m-4)2 ≥ 0 nên phương trình có nghiệm kép => x1= x2 =2
3) vì △'≥0 với mọi m nên phương trình đã cho có nghiệm với mọi m
a: Khi m=2 thì (1) sẽ là x^2-5x+4=0
=>x=1; x=4
b: Δ=(-5)^2-4(m+2)=25-4m-8=17-4m
Để (1) có hai nghiệm phân biệt thì 17-4m>0
=>m<17/4
a, Với m= 2, ta có 2 x 2 − 4 x + 2 = 0 ⇔ x = 1
b) Phương trình (1) có hai nghiệm x 1 , x 2 khi và chỉ khi Δ ' ≥ 0 ⇔ − 2 ≤ m ≤ 2
Theo Vi-et , ta có: x 1 + x 2 = m 1 x 1 . x 2 = m 2 − 2 2 2
Theo đề bài ta có: A = 2 x 1 x 2 − x 1 − x 2 − 4 = m 2 − 2 − m − 4 = m − 3 m + 2
Do − 2 ≤ m ≤ 2 nên m + 2 ≥ 0 , m − 3 ≤ 0 . Suy ra A = m + 2 − m + 3 = − m 2 + m + 6 = − m − 1 2 2 + 25 4 ≤ 25 4
Vậy MaxA = 25 4 khi m = 1 2 .
PT có 2 nghiệm `x_1,x_2`
`<=>\Delta>0`
`<=>(2m+3)^2-4m>0`
`<=>4m^2+12m+9-4m>0`
`<=>4m^2+8m+9>0``
`<=>(2m+2)^2+5>0`(luôn đúng)
Áp dụng vi-ét:$\begin{cases}x_1+x_2=2m+3\\x_1.x_2=m\end{cases}$
$x_1^2+x_2^2\\=(x_1+x_2)^2-2x_1.x_2\\=(2m+3)^2-2m\\=4m^2+12m+9-2m\\=4m^2+10m+9\\=(2m+\dfrac52)^2+\dfrac{11}{4} \geq \dfrac{11}{4}$
Dấu "=" `<=>2m=-5/2<=>m=-5/4`
a)
\(x=-2\) là nghiệm của phương trình
\(\Rightarrow\left(-2\right)^2-\left(-2\right).\left(m-1\right).\left(-2\right)-3=0\)
\(\Leftrightarrow4+4\left(m-1\right)-3=0\)
\(\Leftrightarrow4\left(m-1\right)=-1\)
\(\Leftrightarrow m-1=-\dfrac{1}{4}\)
\(\Leftrightarrow m=\dfrac{3}{4}\)
\(x^2-2\left(m-1\right)x-3=0\)
\(\Leftrightarrow x^2+\dfrac{1}{2}x-3=0\)
\(\Leftrightarrow2x^2+x-6=0\)
\(\Leftrightarrow\left(x+2\right)\left(2x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\2x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{3}{2}\end{matrix}\right.\)
b)
\(\Delta'=\left(m-1\right)^2+12x>0\forall m\)
\(\Rightarrow\) Phương trình luôn có 2 nghiệm phân biệt
Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=-3\end{matrix}\right.\)
Có:
\(Q=x_1^3x_2+x_1x_2^3-5x_1x_2\)
\(=x_1x_2.\left[\left(x_1+x_2\right)^2-2x_1x_2\right]-5x_1x_2\)
\(=-3\left[4\left(m-1\right)^2+6\right]+15\)
\(=-12\left(m-1\right)^2-3\)
Mà \(-12\left(m-1\right)^2\le0\)
\(\Rightarrow-12\left(m-1\right)^2-3\le-3\)
\(Max_Q=-3\Leftrightarrow m-1=0\Leftrightarrow m=1\).
`a)` Thay `x=-2` vào ptr có:
`(-2)^2-2(m-1).(-2)-3=0<=>m=3/4`
Thay `m=3/4` vào ptr có: `x^2-2(3/4-1)x-3=0<=>x^2+1/2x-3=0`
`<=>2x^2+x-6=0<=>(x+2)(2x-3)=0<=>[(x=-2),(x=3/2):}`
`b)` Ptr có nghiệm `<=>\Delta' >= 0`
`<=>[-(m-1)]^2+3 >= 0<=>(m-1)^2+3 >= 0` (LĐ `AA m`)
`=>` Áp dụng Viét có: `{(x_1+x_2=[-b]/a=2m-2),(x_1 .x_2=c/a=-3):}`
Có:`Q=x_1 ^3 x_2+x_1 x_2 ^3 -5x_1 x_2`
`<=>Q=x_1 x_2(x_1 ^2+x_2 ^2)-5x_1 x_2`
`<=>Q=x_1 x_2[(x_1+x_2)^2-2x_1 x_2]-5x_1 x_2`
`<=>Q=-3[(2m-2)^2-2.(-3)]-5.(-3)`
`<=>Q=-3(2m-2)^2-18+15`
`<=>Q=-3(2m-2)^2-3`
Vì `-3(2m-2)^2 <= 0<=>-3(2m-2)^2-3 <= -3 AA m`
`=>Q <= -3 AA m`
Dấu "`=`" xảy ra `<=>2m-2=0<=>m=1`
Vậy GTLN của `Q` là `-3` khi `m=1`